mag_frames = np.abs(fft_frames)
时间: 2023-12-06 16:05:40 浏览: 92
这行代码从所有帧的频域表示 `fft_frames` 中提取了振幅信息,并将其存储在 `mag_frames` 变量中。具体来说,这个代码使用了 `numpy` 库中的 `abs` 函数,该函数返回一个数组,其中每个元素都是对应元素的绝对值。在这里,由于 `fft_frames` 中每个元素都是一个复数,因此 `np.abs(fft_frames)` 返回的数组中每个元素都是对应元素的振幅值。这个操作通常被称为取模(modulus)或者幅度谱(magnitude spectrum)。
相关问题
所以我只需要将adjusted_fft_frames = mag_frames * np.exp(1j * 2 * np.pi * pitch_freqs_smoothed[:, np.newaxis] * freqs[np.newaxis, :])这段代码替换成pitch_freqs_smoothed = pitch_freqs_smoothed[:, np.newaxis]pitch_freqs_smoothed = np.tile(pitch_freqs_smoothed, (1, mag_frames.shape[1]))adjusted_fft_frames = mag_frames * np.exp(1j * 2 * np.pi * pitch_freqs_smoothed * freqs[np.newaxis, :])就行了吗
是的,你可以将原来的代码替换为新的代码,但是需要注意一下 `freqs` 数组的长度是否正确,以确保可以正确进行广播操作。同时,也需要确保 `pitch_freqs_smoothed` 被正确地转换为 `(198, 882)` 的形状。
完整的代码修改如下:
```
freqs = np.fft.rfftfreq(n_fft, d=1.0/sr)
pitch_freqs_smoothed = pitch_freqs_smoothed[:, np.newaxis]
pitch_freqs_smoothed = np.tile(pitch_freqs_smoothed, (1, mag_frames.shape[1]))
adjusted_fft_frames = mag_frames * np.exp(1j * 2 * np.pi * pitch_freqs_smoothed * freqs[np.newaxis, :])
```
这个修改后的代码会将 `pitch_freqs_smoothed` 转换为一个形状为 `(198, 882)` 的数组,然后使用广播机制将其与 `freqs` 相乘,得到一个形状为 `(198, 882)` 的新的振幅谱矩阵 `adjusted_fft_frames`。
sample_rate, signal = wav.read('Male_Twenties.wav') pre_emphasis = 0.95 emphasized_signal = numpy.append(signal[0], signal[1:] - pre_emphasis * signal[:-1]) # 对信号进行短时分帧处理 frame_size = 0.025 # 设置帧长 frame_stride = 0.1 # 计算帧对应采样数(frame_length)以及步长对应采样数(frame_step) frame_length, frame_step = frame_size * sample_rate, frame_stride * sample_rate signal_length = len(emphasized_signal) # 信号总采样数 frame_length = int(round(frame_length)) # 帧采样数 frame_step = int(round(frame_step)) # num_frames为总帧数,确保我们至少有一个帧 num_frames = int(np.ceil(float(np.abs(signal_length - frame_length)) / frame_step)) pad_signal_length = num_frames * frame_step + frame_length z = np.zeros((pad_signal_length - signal_length)) # 填充信号以后确保所有的帧的采样数相等 pad_signal = np.append(emphasized_signal, z) indices = np.tile(np.arange(0, frame_length), (num_frames, 1)) + np.tile( np.arange(0, num_frames * frame_step, frame_step), (frame_length, 1)).T frames = pad_signal[indices.astype(np.int32, copy=False)] NFFT = 512 mag_frames = np.absolute(np.fft.rfft(frames, NFFT)) pow_frames = ((1.0 / NFFT) * ((mag_frames) ** 2)) log_pow_frames = logpowspec(pow_frames, NFFT, norm=1) # 保留语音的前3.5秒 # signal=signal[0:int(3.5*sample_rate)] # 信号预加重 # emphasized_signal=preemphasis(signal,coeff=0.95) # 显示信号 plt.plot(mag_frames) plt.title("Mag_Spectrum") plt.plot(emphasized_signal) plt.show() plt.plot(pow_frames) plt.title("Power_Spectrum") plt.show() plt.plot(log_pow_frames) plt.title("Log_Power_Spectrum") plt.show()中的三个图分别如何命名横纵坐标
第一个图应该命名为 "Mag_Spectrum",横坐标为频率,单位为 Hz,纵坐标为幅度,单位为未知。
第二个图应该命名为 "Power_Spectrum",横坐标为频率,单位为 Hz,纵坐标为功率,单位为未知。
第三个图应该命名为 "Log_Power_Spectrum",横坐标为频率,单位为 Hz,纵坐标为对数功率,单位为未知。
阅读全文