用python对一个read.wav文件进行logmmse算法降噪
时间: 2023-06-14 18:04:43 浏览: 280
可以使用Python中的`pydub`库来读取和写入音频文件,并使用`logmmse`算法进行降噪。以下是一个示例代码:
```python
from pydub import AudioSegment
import numpy as np
from scipy.signal import lfilter, hamming
from scipy.fftpack import fft, ifft
def logmmse(x, noise_frames=10, S=2, eta=0.15, speech_enhancement=True):
# 计算每个短时傅里叶变换的大小
N = 512
K = 16
overlap = N - K
win = hamming(N)
X = np.array([fft(win * x[i:i + N]) for i in range(0, len(x) - N, overlap)])
X_mag = np.abs(X)
# 计算每个短时傅里叶变换的噪声估计
noise_frames = min(noise_frames, X_mag.shape[0])
noise_mean = np.mean(X_mag[:noise_frames], axis=0)
noise_std = np.std(X_mag[:noise_frames], axis=0)
# 计算每个短时傅里叶变换的信噪比
gamma = X_mag / noise_mean - 1
gamma[gamma < 0] = 0
# 计算每个短时傅里叶变换的平滑系数
xi = np.zeros_like(gamma)
for i in range(1, xi.shape[0]):
xi[i] = eta * xi[i - 1] + (1 - eta) * np.maximum(gamma[i] - 1, 0)
xi[xi < S] = S
# 计算每个短时傅里叶变换的增强系数
if speech_enhancement:
beta = gamma * xi / (1 + xi)
else:
beta = xi / (1 + xi)
# 进行短时傅里叶逆变换
Y = np.zeros_like(X)
for i in range(Y.shape[0]):
Y[i] = ifft(np.maximum(X[i] - noise_mean - beta[i] * noise_std, 0)).real
# 将每个短时信号叠加起来
y = np.zeros(len(x))
for i in range(Y.shape[0]):
y[i * overlap:i * overlap + N] += win * Y[i]
return y.astype(np.int16)
# 读取音频文件
sound = AudioSegment.from_file("read.wav", format="wav")
samples = np.array(sound.get_array_of_samples())
# 进行logmmse降噪
denoised_samples = logmmse(samples)
# 将降噪后的信号写入新的音频文件
denoised_sound = AudioSegment(
data=denoised_samples.tobytes(),
sample_width=sound.sample_width,
frame_rate=sound.frame_rate,
channels=sound.channels
)
denoised_sound.export("denoised.wav", format="wav")
```
其中`logmmse`函数实现了`logmmse`算法,可以指定噪声帧数和其他参数来控制算法的降噪效果。读取音频文件可以使用`pydub`库中的`AudioSegment.from_file`函数,将降噪后的信号写入新的音频文件可以使用`pydub`库中的`AudioSegment`类和`export`函数。
阅读全文