编程实现AlexNet网络模型,实现AlexNet网络模型的训练和测试;
时间: 2023-11-22 09:53:06 浏览: 80
首先,需要导入相关的库和数据集,这里使用PyTorch和CIFAR-10数据集。
```python
import torch
import torch.nn as nn
import torch.optim as optim
import torchvision
import torchvision.transforms as transforms
# 加载数据集
transform_train = transforms.Compose([
transforms.RandomCrop(32, padding=4),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)),
])
transform_test = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)),
])
trainset = torchvision.datasets.CIFAR10(root='./data', train=True,
download=True, transform=transform_train)
trainloader = torch.utils.data.DataLoader(trainset, batch_size=128,
shuffle=True, num_workers=2)
testset = torchvision.datasets.CIFAR10(root='./data', train=False,
download=True, transform=transform_test)
testloader = torch.utils.data.DataLoader(testset, batch_size=100,
shuffle=False, num_workers=2)
```
接着,我们可以定义AlexNet网络模型。
```python
class AlexNet(nn.Module):
def __init__(self):
super(AlexNet, self).__init__()
self.conv1 = nn.Conv2d(3, 64, kernel_size=11, stride=4, padding=2)
self.relu1 = nn.ReLU(inplace=True)
self.pool1 = nn.MaxPool2d(kernel_size=3, stride=2)
self.conv2 = nn.Conv2d(64, 192, kernel_size=5, padding=2)
self.relu2 = nn.ReLU(inplace=True)
self.pool2 = nn.MaxPool2d(kernel_size=3, stride=2)
self.conv3 = nn.Conv2d(192, 384, kernel_size=3, padding=1)
self.relu3 = nn.ReLU(inplace=True)
self.conv4 = nn.Conv2d(384, 256, kernel_size=3, padding=1)
self.relu4 = nn.ReLU(inplace=True)
self.conv5 = nn.Conv2d(256, 256, kernel_size=3, padding=1)
self.relu5 = nn.ReLU(inplace=True)
self.pool3 = nn.MaxPool2d(kernel_size=3, stride=2)
self.fc1 = nn.Linear(256 * 6 * 6, 4096)
self.relu6 = nn.ReLU(inplace=True)
self.dropout1 = nn.Dropout()
self.fc2 = nn.Linear(4096, 4096)
self.relu7 = nn.ReLU(inplace=True)
self.dropout2 = nn.Dropout()
self.fc3 = nn.Linear(4096, 10)
def forward(self, x):
x = self.conv1(x)
x = self.relu1(x)
x = self.pool1(x)
x = self.conv2(x)
x = self.relu2(x)
x = self.pool2(x)
x = self.conv3(x)
x = self.relu3(x)
x = self.conv4(x)
x = self.relu4(x)
x = self.conv5(x)
x = self.relu5(x)
x = self.pool3(x)
x = x.view(-1, 256 * 6 * 6)
x = self.fc1(x)
x = self.relu6(x)
x = self.dropout1(x)
x = self.fc2(x)
x = self.relu7(x)
x = self.dropout2(x)
x = self.fc3(x)
return x
```
接着,我们可以定义损失函数和优化器。
```python
net = AlexNet()
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
net.to(device)
criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(net.parameters(), lr=0.001, momentum=0.9)
```
最后,我们可以开始训练和测试模型。
```python
for epoch in range(10): # 训练10个epoch
running_loss = 0.0
for i, data in enumerate(trainloader, 0):
# 输入数据
inputs, labels = data
inputs, labels = inputs.to(device), labels.to(device)
# 梯度清零
optimizer.zero_grad()
# 前向传播,反向传播,优化权重
outputs = net(inputs)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
# 统计损失值
running_loss += loss.item()
if i % 200 == 199: # 每200个batch打印一次训练状态
print('[%d, %5d] loss: %.3f' %
(epoch + 1, i + 1, running_loss / 200))
running_loss = 0.0
print('Finished Training')
# 测试模型
correct = 0
total = 0
with torch.no_grad():
for data in testloader:
inputs, labels = data
inputs, labels = inputs.to(device), labels.to(device)
outputs = net(inputs)
_, predicted = torch.max(outputs.data, 1)
total += labels.size(0)
correct += (predicted == labels).sum().item()
print('Accuracy of the network on the 10000 test images: %d %%' % (
100 * correct / total))
```
这就是使用PyTorch实现AlexNet网络模型的训练和测试的完整代码。
阅读全文