怎么理解function outMap = Intensity_3D( wavelengths, thetaOut, phiOut, R, CA, inputAngle, n1, n2) %This function outputs intensity as a function of wavelength and outgoing %direction for a given cavity size (radius R in microns), %shape (contact angle CA in degrees) % input illumination direction (inputAngle in degrees) % cavity refractive index: n1 % Outside index: n2

时间: 2024-04-06 15:31:44 浏览: 85
这是一个 MATLAB 函数定义,它的名称为 `Intensity_3D`,它接受 8 个输入参数 `wavelengths`、`thetaOut`、`phiOut`、`R`、`CA`、`inputAngle`、`n1` 和 `n2`。这个函数的作用是计算给定尺寸的空腔(半径为 `R`,接触角为 `CA`)的出射方向上的强度,其输入照射方向为 `inputAngle`,介质折射率为 `n1`,外部介质折射率为 `n2`。 具体而言,`wavelengths` 是一个包含所需波长的矢量,`thetaOut` 和 `phiOut` 是出射方向的极角和方位角,`R` 是空腔的半径,`CA` 是空腔的接触角,`inputAngle` 是输入照射方向的角度,`n1` 是空腔的折射率,`n2` 是外部介质的折射率。 函数的输出是一个名为 `outMap` 的变量,它是一个二维矩阵,其中每个元素表示相应波长和出射方向的强度。换言之,该函数返回一个强度矩阵,该矩阵的行数等于所需波长的数量,列数等于出射方向的数量。
相关问题

%input parameters: R=32%Microns n1=1.37 n2=1.27 CA=71 %degrees inputAngle=30 %degrees gridLinesOn=true %Calculation Resolution: dAngle=0.005 %radians wavelengths=linspace(0.3, 0.800, 50); %microns %------------------------------------------------------ thetaOut=[0:dAngle:pi/2]; phiOut=[0:dAngle:pi*2]; %Primary calculation: it should be noted that this calculation takes into %acocunt refraction from n1 medium to air. outMap=Intensity_3D(wavelengths, thetaOut, phiOut, R, CA, inputAngle, n1, n2); %% C=IntensityToColor(wavelengths, outMap); %image(C); C_sphere=sphericalProjection( C, thetaOut, phiOut ); %Output image: figure image([-1, 1], [-1, 1], C_sphere) hold on title(['\theta:', num2str(inputAngle), '^o, R:', num2str(R), '\mu m \eta: ', num2str(CA), '^o' ]) axis image axis off t=linspace(0, 2*pi); plot(cos(t), sin(t), 'w', 'linewidth', 1) if (gridLinesOn) %phi: for p=0:pi/4:pi plot([cos(p), -cos(p)], [sin(p), -sin(p)], 'w', 'linewidth', 1) hold on end % theta: for thetaWhite=[pi/8:pi/8:pi/2]; plot(sin(thetaWhite)*cos(t), sin(thetaWhite)*sin(t), 'w', 'linewidth', 1) end end怎么理解

这段代码是一个 MATLAB 语言的程序,主要用于计算一个球形物体的光强分布,并进行可视化。程序中的各个变量含义如下: - R:球体半径,单位为微米; - n1、n2:入射光线所在介质和球体内介质的折射率; - CA:球体表面的接触角,单位为度; - inputAngle:入射光线与球体表面法线的夹角,单位为度; - dAngle:计算球体表面上采样点的角度间隔,单位为弧度; - wavelengths:计算光强分布的波长范围,单位为微米; - thetaOut、phiOut:球面坐标系下的采样点角度范围,用于计算球面上每个采样点的光强; - outMap:计算得到的球面上每个采样点的光强值; - C、C_sphere:将光强值转化为颜色,用于可视化球体上每个采样点的光强分布; - t:用于绘制球面上的圆形边界; - gridLinesOn:控制是否绘制网格线。如果为 true,则绘制球面上的经线和纬线。 程序主要分为三个部分: 1. 计算球面上每个采样点的光强分布: 使用 Intensity_3D 函数计算球面上每个采样点的光强分布,该函数的输入参数为波长、采样点的极角和方位角、球体半径、接触角、入射光线的夹角和介质的折射率。注意,该函数内部已经考虑了光线的折射现象。 2. 可视化球面上每个采样点的光强分布: 将计算得到的光强分布转化为颜色,并使用 sphericalProjection 函数将颜色映射到球面上。最后,使用 image 函数和 plot 函数将可视化结果显示出来。具体来说,image 函数用于在二维平面上显示球面上每个采样点的颜色,plot 函数用于绘制球面的圆形边界和网格线(如果需要)。 3. 绘制球面上的网格线: 如果 gridLinesOn 为 true,则绘制球面上的经线和纬线。具体来说,使用 for 循环分别绘制经线和纬线。经线的范围为 0 到 2π,每隔 π/4 绘制一条经线;纬线的范围为 0 到 π/2,每隔 π/8 绘制一条纬线。

def on_collect_data_click(): humidity, temperature, uv_intensity = get_sensor_data() humidity_entry.delete(0, tk.END) humidity_entry.insert(0, str(humidity)) temperature_entry.delete(0, tk.END) temperature_entry.insert(0, str(temperature)) uv_intensity_entry.delete(0, tk.END) uv_intensity_entry.insert(0, str(uv_intensity)) collect_data_button = ttk.Button(window, text="Collect Data", command=on_collect_data_click) collect_data_button.grid(column=0, row=4)

这段代码是一个GUI界面上的一个按钮,点击它会调用`on_collect_data_click()`函数,该函数会获取传感器数据并将其显示在界面上。具体来说,`get_sensor_data()`函数获取传感器数据,然后将其分别插入到三个文本框中,分别显示湿度、温度和紫外线强度的数值。`ttk.Button()`用于创建一个按钮,其中`text`参数指定按钮上显示的文本,`command`参数指定点击按钮后执行的函数。`grid()`方法用于将按钮放置在GUI界面的第0列第4行位置。
阅读全文

相关推荐

import argparse import logging import re from multiprocessing import Process, Queue from pathlib import Path import numpy as np from skimage import exposure, filters from modules.config import logger from modules.volume import volume_loading_func, volume_saving_func def normalize_intensity( np_volume: np.ndarray, relative_path: Path, logger: logging.Logger ): logger.info(f"[processing start] {relative_path}") nstack = len(np_volume) stack: np.ndarray = np_volume[nstack // 2 - 16 : nstack // 2 + 16] hist_y, hist_x = exposure.histogram(stack[stack > 0]) thr = filters.threshold_otsu(stack[stack > 0]) peak_air = np.argmax(hist_y[hist_x < thr]) + hist_x[0] peak_soil = np.argmax(hist_y[hist_x > thr]) + (thr - hist_x[0]) + hist_x[0] np_volume = np_volume.astype(np.int64) for i in range(len(np_volume)): np_volume[i] = ( (np_volume[i] - peak_air).clip(0) / (peak_soil - peak_air) * 256 / 2 ) logger.info(f"[processing end] {relative_path}") return exposure.rescale_intensity( np_volume, in_range=(0, 255), out_range=(0, 255) ).astype(np.uint8) if name == "main": parser = argparse.ArgumentParser(description="Intensity Normalizer") parser.add_argument("-s", "--src", type=str, help="source directory.") parser.add_argument("-d", "--dst", type=str, help="destination directory.") parser.add_argument( "--mm_resolution", type=float, default=0.0, help="spatial resolution [mm].", ) parser.add_argument( "--depth", type=int, default=-1, help="depth of the maximum level to be explored. Defaults to unlimited.", ) args = parser.parse_args() if args.src is None: parser.print_help() exit(0) root_src_dir: Path = Path(args.src).resolve() if not root_src_dir.is_dir(): logger.error("Indicate valid virectory path.") exit() root_dst_dir = Path( args.dst or str(root_src_dir) + "_intensity_normalized" ) mm_resolution = float(args.mm_resolution) depth = int(args.depth) volume_loading_queue = Queue() volume_loading_process = Process( target=volume_loading_func, args=(root_src_dir, root_dst_dir, depth, volume_loading_queue, logger), ) volume_loading_process.start() volume_saving_queue = Queue() volume_saving_process = Process( target=volume_saving_func, args=(volume_saving_queue, logger), ) volume_saving_process.start() while True: ( volume_path, np_volume, volume_info, ) = volume_loading_queue.get() if volume_path is None: break relative_path = volume_path.relative_to(root_src_dir) np_volume = normalize_intensity(np_volume, relative_path, logger) if mm_resolution != 0: volume_info.update({"mm_resolution": mm_resolution}) while volume_saving_queue.qsize() == 1: pass dst_path = Path( root_dst_dir, re.sub(r"cb\d{3}$", "", str(relative_path)) ) volume_saving_queue.put( (dst_path, root_dst_dir, np_volume, volume_info) ) volume_saving_queue.put((None, None, None, None))完整详细的解释每一行的代码意思和作用

for i in np.arange(len(radar_lines)): radar_line=radar_lines[i] pcd_line=pcd_lines[i] pcd_obj = Object3d(pcd_line) center = np.array(pcd_obj.t) center[2] = center[2]+pcd_obj.h # ry=obj.ry heading_angle = -pcd_obj.ry - np.pi / 2 R = rotz((heading_angle)) # only boundingbox range = (pcd_obj.l, pcd_obj.w, pcd_obj.h) # all vertical range = (pcd_obj.l, pcd_obj.w, 10) # print(center,obj.ry,range) bbx = o3d.geometry.OrientedBoundingBox(center, R, range) cropped_cloud = pcd.crop(bbx) # if set colors colors = [[0, 255, 0] for i in np.arange(len(cropped_cloud.points))] # cropped_cloud.colors = o3d.utility.Vector3dVector(colors) o3d.visualization.draw_geometries([cropped_cloud, bbx]) print(pcd_obj.h) radar_obj = Object2d(radar_line) center = [radar_obj.box2d[0], radar_obj.box2d[1]] w = radar_obj.box2d[2] h = radar_obj.box2d[3] angle = radar_obj.angle # rect = cv2.minAreaRect(cnt) box = cv2.boxPoints((center, (w, h), angle)) print(box) box = np.int0(box) cv2.drawContours(im, [box], 0, (0, 0, 255), 2) mask = np.zeros_like(im) # 使用旋转框的角点绘制多边形掩膜 cv2.drawContours(mask, [box], 0, (255, 255, 255), -1) # 使用掩膜提取旋转框内的像素 masked_image = cv2.bitwise_and(im, mask) cv2.imshow("2d bbx", masked_image) cv2.waitKey(0) cv2.destroyAllWindows() 这里的mask里面都是1,以外的都是0,所以mask加起来就是2dbox里radar image的像素个数。masked_image里,mask以外的都是0,mask内的都是radar的值,所以masked_image里面的都加起来就是2dbox 里radar image的反射强度值。这两个一除就能算radar里有车object的区域里每个像素的平均反射强度。根据上述截取的部分代码和信息,添加代码,算出区域内的平均反射强度并输出。

将下面这段代码改用python写出来: clear all; close all; fdir = '../dataset/iso/saii/'; %Reconstruction parameters depth_start = 710; depth_end = 720; depth_step = 1; pitch = 12; sensor_sizex = 24; focal_length = 8; lens_x = 4; lens_y = 4; %% import elemental image infile=[fdir '11.bmp']; outfile=[fdir, 'EIRC/']; mkdir(outfile); original_ei=uint8(imread(infile)); [v,h,d]=size(original_ei); %eny = v/lens_y; enx = h/lens_x; % Calculate real focal length %f_ratio=36/sensor_sizex; sensor_sizey = sensor_sizex * (v/h); %focal_length = focal_length*f_ratio; EI = zeros(v, h, d, lens_x * lens_y,'uint8'); for y = 1:lens_y for x = 1:lens_x temp=imread([fdir num2str(y),num2str(x),'.bmp']); EI(:, :, :, x + (y-1) * lens_y) = temp; end end %Reconstruction [EIy, EIx, Color] = size(EI(:,:,:,1)); %% EI_VCR time=[]; for Zr = depth_start:depth_step:depth_end tic; Shx = 8*round((EIx*pitch*focal_length)/(sensor_sizex*Zr)); Shy = 8*round((EIy*pitch*focal_length)/(sensor_sizey*Zr)); Img = (double(zeros(EIy+(lens_y-1)*Shy,EIx+(lens_x-1)*Shx, Color))); Intensity = (uint16(zeros(EIy+(lens_y-1)*Shy,EIx+(lens_x-1)*Shx, Color))); for y=1:lens_y for x=1:lens_x Img((y-1)*Shy+1:(y-1)*Shy+EIy,(x-1)*Shx+1:(x-1)*Shx+EIx,:) = Img((y-1)*Shy+1:(y-1)*Shy+EIy,(x-1)*Shx+1:(x-1)*Shx+EIx,:) + im2double(EI(:,:,:,x+(y-1)*lens_y)); Intensity((y-1)*Shy+1:(y-1)*Shy+EIy,(x-1)*Shx+1:(x-1)*Shx+EIx,:) = Intensity((y-1)*Shy+1:(y-1)*Shy+EIy,(x-1)*Shx+1:(x-1)*Shx+EIx,:) + uint16(ones(EIy,EIx,Color)); end end elapse=toc time=[time elapse]; display(['--------------- Z = ', num2str(Zr), ' is processed ---------------']); Fname = sprintf('EIRC/%dmm.png',Zr); imwrite(Img./double(Intensity), [fdir Fname]); end csvwrite([fdir 'EIRC/time.csv'],time);

最新推荐

recommend-type

Unity3D实现警报灯

在Unity3D游戏开发中,实现警报灯效果是一个常见的需求,特别是在角色进入危险状态时,需要通过视觉和听觉的提示来提醒玩家。本文将详细介绍如何使用Unity3D来创建一个具有动态亮度变化和音乐控制的警报灯系统。 ...
recommend-type

基于springboot的酒店管理系统源码(java毕业设计完整源码+LW).zip

项目均经过测试,可正常运行! 环境说明: 开发语言:java JDK版本:jdk1.8 框架:springboot 数据库:mysql 5.7/8 数据库工具:navicat 开发软件:eclipse/idea
recommend-type

WildFly 8.x中Apache Camel结合REST和Swagger的演示

资源摘要信息:"CamelEE7RestSwagger:Camel on EE 7 with REST and Swagger Demo" 在深入分析这个资源之前,我们需要先了解几个关键的技术组件,它们是Apache Camel、WildFly、Java DSL、REST服务和Swagger。下面是这些知识点的详细解析: 1. Apache Camel框架: Apache Camel是一个开源的集成框架,它允许开发者采用企业集成模式(Enterprise Integration Patterns,EIP)来实现不同的系统、应用程序和语言之间的无缝集成。Camel基于路由和转换机制,提供了各种组件以支持不同类型的传输和协议,包括HTTP、JMS、TCP/IP等。 2. WildFly应用服务器: WildFly(以前称为JBoss AS)是一款开源的Java应用服务器,由Red Hat开发。它支持最新的Java EE(企业版Java)规范,是Java企业应用开发中的关键组件之一。WildFly提供了一个全面的Java EE平台,用于部署和管理企业级应用程序。 3. Java DSL(领域特定语言): Java DSL是一种专门针对特定领域设计的语言,它是用Java编写的小型语言,可以在Camel中用来定义路由规则。DSL可以提供更简单、更直观的语法来表达复杂的集成逻辑,它使开发者能够以一种更接近业务逻辑的方式来编写集成代码。 4. REST服务: REST(Representational State Transfer)是一种软件架构风格,用于网络上客户端和服务器之间的通信。在RESTful架构中,网络上的每个资源都被唯一标识,并且可以使用标准的HTTP方法(如GET、POST、PUT、DELETE等)进行操作。RESTful服务因其轻量级、易于理解和使用的特性,已经成为Web服务设计的主流风格。 5. Swagger: Swagger是一个开源的框架,它提供了一种标准的方式来设计、构建、记录和使用RESTful Web服务。Swagger允许开发者描述API的结构,这样就可以自动生成文档、客户端库和服务器存根。通过Swagger,可以清晰地了解API提供的功能和如何使用这些API,从而提高API的可用性和开发效率。 结合以上知识点,CamelEE7RestSwagger这个资源演示了如何在WildFly应用服务器上使用Apache Camel创建RESTful服务,并通过Swagger来记录和展示API信息。整个过程涉及以下几个技术步骤: - 首先,需要在WildFly上设置和配置Camel环境,确保Camel能够运行并且可以作为路由引擎来使用。 - 其次,通过Java DSL编写Camel路由,定义如何处理来自客户端的HTTP请求,并根据请求的不同执行相应的业务逻辑。 - 接下来,使用Swagger来记录和描述创建的REST API。这包括定义API的路径、支持的操作、请求参数和响应格式等。 - 最后,通过Swagger提供的工具生成API文档和客户端代码,以及服务器端的存根代码,从而使得开发者可以更加便捷地理解和使用这些RESTful服务。 这个资源的实践演示对于想要学习如何在Java EE平台上使用Camel集成框架,并且希望提供和记录REST服务的开发者来说是非常有价值的。通过这种方式,开发者可以更加快速和简单地创建和管理Web服务,同时也增强了API的可访问性和可维护性。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【声子晶体模拟全能指南】:20年经验技术大佬带你从入门到精通

![【声子晶体模拟全能指南】:20年经验技术大佬带你从入门到精通](https://docs.lammps.org/_images/lammps-gui-main.png) # 摘要 声子晶体作为一种具有周期性结构的材料,在声学隐身、微波和红外领域具有广泛的应用潜力。本文从基础理论出发,深入探讨了声子晶体的概念、物理模型和声子带结构的理论解析,同时介绍了声子晶体的数值模拟方法,包括有限元方法(FEM)、离散元方法(DEM)和分子动力学(MD)。本文还提供了一套完整的声子晶体模拟实践指南,涵盖了模拟前的准备工作、详细的模拟步骤以及结果验证和案例分析。此外,文章探讨了声子晶体模拟的高级技巧和拓展
recommend-type

2024-07-27怎么用python转换成农历日期

在Python中,可以使用`lunarcalendar`库来将公历日期转换为农历日期。首先,你需要安装这个库,可以通过pip命令进行安装: ```bash pip install lunarcalendar ``` 安装完成后,你可以使用以下代码将公历日期转换为农历日期: ```python from lunarcalendar import Converter, Solar, Lunar, DateNotExist # 创建一个公历日期对象 solar_date = Solar(2024, 7, 27) # 将公历日期转换为农历日期 try: lunar_date = Co
recommend-type

FDFS客户端Python库1.2.6版本发布

资源摘要信息:"FastDFS是一个开源的轻量级分布式文件系统,它对文件进行管理,功能包括文件存储、文件同步、文件访问等,适用于大规模文件存储和高并发访问场景。FastDFS为互联网应用量身定制,充分考虑了冗余备份、负载均衡、线性扩容等机制,保证系统的高可用性和扩展性。 FastDFS 架构包含两个主要的角色:Tracker Server 和 Storage Server。Tracker Server 作用是负载均衡和调度,它接受客户端的请求,为客户端提供文件访问的路径。Storage Server 作用是文件存储,一个 Storage Server 中可以有多个存储路径,文件可以存储在不同的路径上。FastDFS 通过 Tracker Server 和 Storage Server 的配合,可以完成文件上传、下载、删除等操作。 Python 客户端库 fdfs-client-py 是为了解决 FastDFS 文件系统在 Python 环境下的使用。fdfs-client-py 使用了 Thrift 协议,提供了文件上传、下载、删除、查询等接口,使得开发者可以更容易地利用 FastDFS 文件系统进行开发。fdfs-client-py 通常作为 Python 应用程序的一个依赖包进行安装。 针对提供的压缩包文件名 fdfs-client-py-master,这很可能是一个开源项目库的名称。根据文件名和标签“fdfs”,我们可以推测该压缩包包含的是 FastDFS 的 Python 客户端库的源代码文件。这些文件可以用于构建、修改以及扩展 fdfs-client-py 功能以满足特定需求。 由于“标题”和“描述”均与“fdfs-client-py-master1.2.6.zip”有关,没有提供其它具体的信息,因此无法从标题和描述中提取更多的知识点。而压缩包文件名称列表中只有一个文件“fdfs-client-py-master”,这表明我们目前讨论的资源摘要信息是基于对 FastDFS 的 Python 客户端库的一般性了解,而非基于具体文件内容的分析。 根据标签“fdfs”,我们可以深入探讨 FastDFS 相关的概念和技术细节,例如: - FastDFS 的分布式架构设计 - 文件上传下载机制 - 文件同步机制 - 元数据管理 - Tracker Server 的工作原理 - Storage Server 的工作原理 - 容错和数据恢复机制 - 系统的扩展性和弹性伸缩 在实际使用中,开发者可以通过 fdfs-client-py 库来与 FastDFS 文件系统进行交互,利用其提供的 API 接口实现文件的存储、管理等功能,从而开发出高效、可靠的文件处理应用。开发者可以根据项目的实际需求,选择合适的 FastDFS 版本,并根据官方文档进行安装、配置及优化,确保系统稳定运行。 总的来说,fdfs-client-py 是 FastDFS 文件系统与 Python 应用之间的一座桥梁,它使得开发者能够更加方便地将 FastDFS 集成到基于 Python 开发的应用中,发挥出 FastDFS 在文件管理方面的优势。"
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

传感器集成全攻略:ICM-42688-P运动设备应用详解

![传感器集成全攻略:ICM-42688-P运动设备应用详解](https://static.mianbaoban-assets.eet-china.com/xinyu-images/MBXY-CR-ba33fcfbde1d1207d7b8fe45b6ea58d0.png) # 摘要 ICM-42688-P传感器作为一种先进的惯性测量单元,广泛应用于多种运动设备中。本文首先介绍了ICM-42688-P传感器的基本概述和技术规格,然后深入探讨了其编程基础,包括软件接口、数据读取处理及校准测试。接着,本文详细分析了该传感器在嵌入式系统、运动控制和人机交互设备中的实践应用,并且探讨了高级功能开发,
recommend-type

matlab 中实现 astar

在MATLAB中,A*算法是一种用于求解最短路径问题的启发式搜索算法。它适用于带权重的图或网格,特别是当有大量潜在解决方案时,比如迷宫寻路问题。以下是使用MATLAB基本步骤来实现A*算法: 1. **数据结构准备**: - 创建一个二维数组表示地图,其中0代表可以通行的节点,其他值代表障碍物或边界。 - 定义一个队列(通常使用`prioritiesqueue`)来存储待探索的节点及其信息。 2. **初始化**: - 设定起始节点(start),目标节点(goal),以及每个节点的初始g值(从起点到该点的实际代价)和f值(g值加上估计的h值,即启发函数)。 3.