请基于pytorch搭建一个用于交通标志识别的网络
时间: 2023-08-10 12:05:26 浏览: 114
好的,我可以为您提供一个基于PyTorch的交通标志识别模型的代码示例。这个模型使用卷积神经网络(CNN)来学习图像特征,并使用全连接层进行分类。
以下是示例代码:
```python
import torch
import torch.nn as nn
import torch.optim as optim
import torchvision.transforms as transforms
import torchvision.datasets as datasets
# 定义模型
class TrafficSignNet(nn.Module):
def __init__(self):
super(TrafficSignNet, self).__init__()
self.conv1 = nn.Conv2d(3, 32, kernel_size=3, padding=1)
self.conv2 = nn.Conv2d(32, 64, kernel_size=3, padding=1)
self.conv3 = nn.Conv2d(64, 128, kernel_size=3, padding=1)
self.pool = nn.MaxPool2d(2, 2)
self.fc1 = nn.Linear(128 * 8 * 8, 512)
self.fc2 = nn.Linear(512, 43)
def forward(self, x):
x = self.pool(nn.functional.relu(self.conv1(x)))
x = self.pool(nn.functional.relu(self.conv2(x)))
x = self.pool(nn.functional.relu(self.conv3(x)))
x = x.view(-1, 128 * 8 * 8)
x = nn.functional.relu(self.fc1(x))
x = self.fc2(x)
return x
# 加载数据集
transform = transforms.Compose([
transforms.Resize((32, 32)),
transforms.ToTensor()
])
train_set = datasets.ImageFolder('train_dir', transform=transform)
train_loader = torch.utils.data.DataLoader(train_set, batch_size=32, shuffle=True)
test_set = datasets.ImageFolder('test_dir', transform=transform)
test_loader = torch.utils.data.DataLoader(test_set, batch_size=32, shuffle=True)
# 训练模型
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
model = TrafficSignNet().to(device)
criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(model.parameters(), lr=0.001)
for epoch in range(10):
running_loss = 0.0
for i, data in enumerate(train_loader):
inputs, labels = data[0].to(device), data[1].to(device)
optimizer.zero_grad()
outputs = model(inputs)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
running_loss += loss.item()
print("Epoch %d loss: %.3f" % (epoch+1, running_loss/len(train_loader)))
# 测试模型
correct = 0
total = 0
with torch.no_grad():
for data in test_loader:
images, labels = data[0].to(device), data[1].to(device)
outputs = model(images)
_, predicted = torch.max(outputs.data, 1)
total += labels.size(0)
correct += (predicted == labels).sum().item()
print("Accuracy: %.2f%%" % (100 * correct / total))
```
在这个示例中,我们定义了一个名为`TrafficSignNet`的类,该类继承自`nn.Module`。该模型包含三个卷积层,每个卷积层后面跟着一个最大池化层。最后,我们使用两个全连接层进行分类。我们使用的是交叉熵损失函数和Adam优化器。我们使用的数据集是`ImageFolder`,它将图像和标签组织在不同的文件夹中。我们将训练集和测试集分别放在`train_dir`和`test_dir`文件夹中。在训练过程中,我们迭代数据批次,并使用反向传播来更新模型参数。在测试过程中,我们计算模型在测试集上的准确率。
阅读全文