用python编写代码:识别人脸图片,输出其性别(1为男性,2为女性)、是否微笑(1为笑,2为不笑)、是否戴眼镜(1为戴眼镜,2为不戴眼镜)、头部朝向(1为朝左,2为朝左前方,3为朝正面,4为朝右,5为朝右前方)
时间: 2023-06-16 22:08:16 浏览: 108
要实现人脸识别,需要使用计算机视觉库,如OpenCV。同时,要进行性别、微笑、戴眼镜和头部朝向的识别,可以使用预训练的深度学习模型。以下是一个简单的示例代码,可以实现基本的人脸识别和属性识别:
```python
import cv2
import urllib.request
import numpy as np
# 下载预训练的模型
MODEL_URL = "https://github.com/opencv/opencv/raw/master/data/haarcascades/haarcascade_frontalface_default.xml"
MODEL_PATH = "haarcascade_frontalface_default.xml"
urllib.request.urlretrieve(MODEL_URL, MODEL_PATH)
# 加载模型
face_cascade = cv2.CascadeClassifier(MODEL_PATH)
# 加载属性识别模型
gender_net = cv2.dnn.readNetFromCaffe("deploy_gender.prototxt", "gender_net.caffemodel")
smile_net = cv2.dnn.readNetFromTensorflow("frozen_smile.pb")
glass_net = cv2.dnn.readNetFromTensorflow("frozen_glass.pb")
headpose_net = cv2.dnn.readNetFromTensorflow("frozen_headpose.pb")
# 定义属性识别函数
def recognize_attributes(image, face):
# 提取人脸区域
(x, y, w, h) = face
face_image = image[y:y+h, x:x+w]
# 人脸图像预处理
blob = cv2.dnn.blobFromImage(face_image, 1.0, (227, 227), (78.4263377603, 87.7689143744, 114.895847746), swapRB=False)
# 性别识别
gender_net.setInput(blob)
gender_preds = gender_net.forward()
gender = np.argmax(gender_preds)
# 微笑识别
smile_net.setInput(blob)
smile_preds = smile_net.forward()
smile = np.argmax(smile_preds)
# 戴眼镜识别
glass_net.setInput(blob)
glass_preds = glass_net.forward()
glass = np.argmax(glass_preds)
# 头部朝向识别
headpose_net.setInput(blob)
headpose_preds = headpose_net.forward()
yaw = headpose_preds[0][0]
pitch = headpose_preds[0][1]
roll = headpose_preds[0][2]
if yaw < -22.5:
headpose = 1
elif yaw < 22.5:
headpose = 3
elif yaw < 67.5:
headpose = 2
elif yaw < 112.5:
headpose = 3
else:
headpose = 4
return gender, smile, glass, headpose
# 打开摄像头
camera = cv2.VideoCapture(0)
while True:
# 读取一帧图像
ret, frame = camera.read()
# 转换为灰度图像
gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
# 检测人脸
faces = face_cascade.detectMultiScale(gray, 1.3, 5)
# 对于每个检测到的人脸,进行属性识别并在图像上绘制矩形和标签
for i, (x, y, w, h) in enumerate(faces):
# 识别属性
gender, smile, glass, headpose = recognize_attributes(frame, (x, y, w, h))
# 绘制矩形
cv2.rectangle(frame, (x, y), (x+w, y+h), (0, 255, 0), 2)
# 绘制标签
label = "Gender: %s, Smile: %s, Glass: %s, Headpose: %s" % (gender, smile, glass, headpose)
cv2.putText(frame, label, (x, y-10), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 255, 0), 1)
# 显示图像
cv2.imshow("Face Recognition", frame)
# 等待按下ESC键退出
if cv2.waitKey(1) == 27:
break
# 释放摄像头并关闭窗口
camera.release()
cv2.destroyAllWindows()
```
在这个示例代码中,我们使用了OpenCV中的haar级联分类器来检测人脸,然后使用预训练的深度学习模型来识别人脸的性别、微笑、戴眼镜和头部朝向。属性识别模型使用了Caffe和TensorFlow框架。最后,我们在图像上绘制了矩形和标签,显示人脸属性信息。
阅读全文