在digits数据集上创建一个knn算法分类器,并计算它的准确度、
时间: 2024-03-05 08:47:53 浏览: 95
好的,我明白了。针对您的问题,我将提供以下步骤:
1. 导入digits数据集和sklearn库中的KNeighborsClassifier模块。
```python
from sklearn.datasets import load_digits
from sklearn.model_selection import train_test_split
from sklearn.neighbors import KNeighborsClassifier
```
2. 加载digits数据集并进行拆分。
```python
digits = load_digits()
X_train, X_test, y_train, y_test = train_test_split(digits.data, digits.target, test_size=0.2, random_state=0)
```
3. 创建KNN分类器并进行训练。
```python
knn = KNeighborsClassifier(n_neighbors=5)
knn.fit(X_train, y_train)
```
4. 对测试数据进行预测并计算准确度。
```python
accuracy = knn.score(X_test, y_test)
print("Accuracy:", accuracy)
```
完整代码如下:
```python
from sklearn.datasets import load_digits
from sklearn.model_selection import train_test_split
from sklearn.neighbors import KNeighborsClassifier
digits = load_digits()
X_train, X_test, y_train, y_test = train_test_split(digits.data, digits.target, test_size=0.2, random_state=0)
knn = KNeighborsClassifier(n_neighbors=5)
knn.fit(X_train, y_train)
accuracy = knn.score(X_test, y_test)
print("Accuracy:", accuracy)
```
这段代码将创建一个KNN分类器并在digits数据集上进行训练和测试,然后输出分类器的准确度。
阅读全文