用GEE进行Sen趋势分析,并MK检验,请写一个代码
时间: 2024-04-22 22:27:27 浏览: 183
好的,以下是基于Google Earth Engine的Sen趋势分析及MK检验的代码:
```
// 设置区域
var roi = ee.Geometry.Polygon(
[[[-98.72, 34.33], [-98.72, 34.05], [-98.25, 34.05], [-98.25, 34.33]]],
null,
false
);
// 加载Landsat 5影像集
var collection = ee.ImageCollection('LANDSAT/LT05/C01/T1_SR')
.filterDate('1984-01-01', '2011-12-31')
.filterBounds(roi)
.map(function(image) {
return image.select('B1', 'B2', 'B3', 'B4', 'B5', 'B7')
.multiply(0.0001)
.copyProperties(image, ['system:time_start']);
});
// 定义Sen趋势函数
var SenTrend = function(collection, band, startYear, endYear) {
// 计算年份
var years = ee.List.sequence(startYear, endYear);
// 计算每个像素的趋势值
var trend = collection.map(function(image) {
var year = ee.Date(image.get('system:time_start')).get('year');
var mask = image.select(band).mask();
var value = image.select(band).multiply(mask);
var normalized = value.divide(mask.reduceRegion({
reducer: ee.Reducer.mean(),
geometry: roi,
scale: 30
}).get(band));
return normalized.set('system:time_start', image.get('system:time_start')).set('year', year);
}).reduce(ee.Reducer.linearFit());
// 计算趋势斜率
var slope = trend.select('scale');
// 按年份计算每个像素的趋势值
var annualTrend = ee.ImageCollection.fromImages(
years.map(function(year) {
var annualImage = collection.filterDate(ee.Date.fromYMD(year, 1, 1), ee.Date.fromYMD(year, 12, 31)).mean();
var annualMask = annualImage.select(band).mask();
var annualValue = annualImage.select(band).multiply(annualMask);
var annualNormalized = annualValue.divide(annualMask.reduceRegion({
reducer: ee.Reducer.mean(),
geometry: roi,
scale: 30
}).get(band));
return annualNormalized.set('year', year);
})
);
// 计算年均值
var annualMean = annualTrend.reduce(ee.Reducer.mean());
// 计算残差
var residual = collection.map(function(image) {
var year = ee.Date(image.get('system:time_start')).get('year');
var mask = image.select(band).mask();
var value = image.select(band).multiply(mask);
var normalized = value.divide(mask.reduceRegion({
reducer: ee.Reducer.mean(),
geometry: roi,
scale: 30
}).get(band));
var trendValue = annualMean.select('year', ee.String(year).cat('_mean')).rename('trend');
var detrended = normalized.subtract(trendValue);
return detrended.set('system:time_start', image.get('system:time_start')).set('year', year);
});
// 返回结果
return {
'slope': slope,
'annual': annualTrend,
'residual': residual
};
};
// 运行Sen趋势分析
var trend = SenTrend(collection, 'B3', 1984, 2011);
// 计算MK检验
var MKTest = function(collection) {
// 计算每个像素的趋势值
var trends = collection.map(function(image) {
var mask = image.mask();
var value = image.multiply(mask);
var normalized = value.divide(mask.reduceRegion({
reducer: ee.Reducer.mean(),
geometry: roi,
scale: 30
}).get('B3'));
return normalized.set('system:time_start', image.get('system:time_start'));
});
// 计算趋势斜率
var slopes = trends.map(function(image) {
var year = ee.Date(image.get('system:time_start')).get('year');
return image.select('B3').reduceRegion({
reducer: ee.Reducer.linearFit(),
geometry: roi,
scale: 30
}).get('scale').set('year', year);
});
// 计算MK检验
var N = slopes.size();
var S = ee.List.sequence(1, N).map(function(i) {
return ee.List.sequence(i+1, N).map(function(j) {
return ee.Algorithms.If(ee.Number(slopes.get(j)).subtract(slopes.get(i)).gt(0), 1, ee.Algorithms.If(ee.Number(slopes.get(j)).subtract(slopes.get(i)).lt(0), -1, 0));
});
}).flatten().reduce(ee.Reducer.sum());
var varS = ee.Number(N*(N-1)*(2*N+5)).divide(18);
var Z = ee.Number(S).divide(ee.Number(varS).sqrt());
// 返回结果
return {
'slopes': slopes,
'MK': Z
};
};
// 运行MK检验
var test = MKTest(collection.select('B3').filterDate('1990-01-01', '2010-12-31'));
// 显示结果
print('Sen趋势斜率', trend.slope);
print('MK检验', test.MK);
```
这段代码实现了对Landsat 5影像集中某个区域的B3波段进行Sen趋势分析,并计算了1990年到2010年期间的MK检验。其中,Sen趋势分析使用了Google Earth Engine中的reduce()函数和reduceRegion()函数,MK检验则使用了Algorithms.If()函数和reduce()函数。
阅读全文