R语言神经网络输出预测结果
时间: 2023-10-23 20:21:06 浏览: 112
在R语言中,可以使用神经网络模型预测输出结果。以下是一个简单的示例:
首先,我们需要加载神经网络包 `neuralnet`:
```R
library(neuralnet)
```
接着,我们需要准备数据集,设 X 为输入数据,Y 为输出数据。这里我们使用 `iris` 数据集来做示例:
```R
data(iris)
X <- iris[,1:4]
Y <- iris[,5]
```
然后我们需要对数据进行归一化处理,使得每个特征在同一范围内:
```R
normalize <- function(x) {
return ((x - min(x)) / (max(x) - min(x)))
}
X <- apply(X, 2, normalize)
```
接着,我们可以使用 `neuralnet` 函数来建立神经网络模型:
```R
net <- neuralnet(Species ~ Sepal.Length + Sepal.Width + Petal.Length + Petal.Width, data = iris, hidden = c(4, 2), err.fct = 'ce', linear.output = FALSE)
```
此处,我们指定了输入变量和输出变量,`hidden` 参数指定了神经网络的隐藏层数和每层的神经元个数,`err.fct` 参数指定了误差函数,此处使用交叉熵函数,`linear.output` 参数指定了输出是否为线性函数。
然后我们可以使用 `compute` 函数来进行预测:
```R
predicted.values <- compute(net, X)
```
最终得到的 `predicted.values` 就是我们预测的输出结果。
注意,这里输出的结果是一个矩阵,其中每一列代表一个输出变量的预测值。如果我们只想要得到一个输出变量的预测结果,可以这样做:
```R
predicted.values <- predicted.values$net.result
```
阅读全文
相关推荐

















