gan网络生成图片质量评价代码
时间: 2023-08-24 11:04:00 浏览: 110
以下是使用Inception Score评价GAN网络生成图片质量的Python代码:
```python
import tensorflow as tf
import numpy as np
import os
import functools
from tensorflow.python.ops import array_ops
from tensorflow.python.ops import functional_ops
slim = tf.contrib.slim
def inception_score(images, num_classes=1000, batch_size=32, splits=10):
"""
计算Inception Score
:param images: 生成图片的张量,shape为[batch_size, height, width, channels],像素值范围为[0, 255]
:param num_classes: Inception网络的类别数,默认为1000
:param batch_size: 计算Inception Score时的batch大小,默认为32
:param splits: 分割数量,默认为10
:return: Inception Score
"""
assert (images.shape[1] == images.shape[2]) # 保证图片为正方形
inception_images = tf.image.resize_bilinear(images, [299, 299])
inception_images = tf.divide(inception_images, 255.0)
logits = []
for i in range(0, images.shape[0], batch_size):
batch = inception_images[i:i + batch_size, :, :, :]
logit = functional_ops.softmax(
functional_ops.in_top_k(
predictions=tf.cast(batch, tf.float32),
targets=tf.constant(np.arange(num_classes)),
k=1)
)
logits.append(logit)
logits = array_ops.concat(logits, 0)
scores = []
for i in range(splits):
part = logits[
(i * logits.shape[0] // splits):
((i + 1) * logits.shape[0] // splits), :]
kl = part * (tf.log(part) - tf.log(tf.reduce_mean(part, 0, keepdims=True)))
kl = tf.reduce_mean(tf.reduce_sum(kl, 1))
scores.append(tf.exp(kl))
return tf.reduce_mean(scores)
def get_inception_score(sess, images_ph, fake_images):
"""
计算Inception Score
:param sess: TensorFlow会话
:param images_ph: 真实图片的占位符
:param fake_images: 生成图片的张量
:return: Inception Score
"""
assert (fake_images.shape[1] == fake_images.shape[2]) # 保证图片为正方形
fake_images = (fake_images + 1.0) / 2.0 # 将像素值从[-1, 1]转换为[0, 1]
num_images = fake_images.shape[0]
num_batches = int(np.ceil(num_images / 32))
scores = []
for i in range(num_batches):
batch_fake_images = fake_images[i * 32:(i + 1) * 32]
score = sess.run(inception_score(images_ph, fake_images=batch_fake_images))
scores.append(score)
return np.mean(scores)
if __name__ == '__main__':
# 在此处定义生成器生成的图片张量fake_images
# ...
# 加载Inception模型
inception_path = os.path.join('inception', 'inception_v3.ckpt')
sess = tf.Session()
images_ph = tf.placeholder(tf.float32, shape=[None, None, None, 3])
with slim.arg_scope(inception_v3_arg_scope()):
_, end_points = inception_v3(images_ph, num_classes=1000, is_training=False)
inception_variables = slim.get_variables(scope='InceptionV3')
saver = tf.train.Saver(var_list=inception_variables)
saver.restore(sess, inception_path)
# 计算Inception Score
inception_score = get_inception_score(sess, images_ph, fake_images)
print('Inception Score:', inception_score)
sess.close()
```
需要注意的是,这里假设生成器生成的图片像素值范围为[-1, 1],因此需要先将像素值从[-1, 1]转换为[0, 1]。同时,需要将Inception模型文件(`inception_v3.ckpt`)和代码文件放在同一个目录下。
阅读全文