sentence-transformers的帮助文档
时间: 2024-05-03 14:09:28 浏览: 161
Sentence-transformers是一种基于深度学习的工具,用于将自然语言句子转换为向量表示。以下是该工具的帮助文档:
1. 安装
要安装Sentence-transformers,请使用以下命令:
pip install sentence-transformers
2. 使用
使用Sentence-transformers很简单。只需导入相应的模型和tokenizer,并将文本传递给模型即可。以下是一个示例:
from sentence_transformers import SentenceTransformer, util
model = SentenceTransformer('bert-base-nli-mean-tokens')
sentences = ['This is an example sentence', 'Each sentence is converted to a vector']
sentence_embeddings = model.encode(sentences)
3. 模型
Sentence-transformers包括许多不同的模型,包括基于BERT、RoBERTa和DistilBERT的模型。您可以使用以下命令查看所有可用的模型:
from sentence_transformers import SentenceTransformer
models = SentenceTransformer.models
print(models)
4. 相似度计算
Sentence-transformers还包括一些实用程序函数,可用于计算句子之间的相似度。以下是一个示例:
from sentence_transformers import SentenceTransformer, util
model = SentenceTransformer('bert-base-nli-mean-tokens')
sentences = ['This is an example sentence', 'Each sentence is converted to a vector', 'Sentence embeddings are useful for many NLP tasks']
sentence_embeddings = model.encode(sentences)
# 计算第一句话和第二句话之间的余弦相似度
cosine_scores = util.pytorch_cos_sim(sentence_embeddings[0], sentence_embeddings[1])
print(cosine_scores)
5. 参考文献
如果您想了解有关Sentence-transformers的更多信息,请参阅以下文献:
- Reimers, N., & Gurevych, I. (2019). Sentence-BERT: Sentence embeddings using siamese BERT-networks. arXiv preprint arXiv:1908.10084.
- Devlin, J., Chang, M. W., Lee, K., & Toutanova, K. (2019). BERT: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805.
阅读全文