bert-bilstm-crf 中文分词
时间: 2023-12-18 21:04:23 浏览: 201
BERT-BiLSTM-CRF是一种基于深度学习的中文分词方法,它结合了BERT预训练模型、双向长短时记忆网络(BiLSTM)和条件随机场(CRF)模型。具体流程如下:
1. 预处理:将中文文本转换为字符序列,并将每个字符转换为对应的向量表示。
2. BERT编码:使用BERT模型对字符序列进行编码,得到每个字符的上下文表示。
3. BiLSTM编码:将BERT编码后的字符向量输入到双向LSTM中,得到每个字符的上下文表示。
4. CRF解码:使用CRF模型对BiLSTM编码后的结果进行解码,得到最终的分词结果。
以下是BERT-BiLSTM-CRF中文分词的Python代码示例:
```python
import torch
import torch.nn as nn
from transformers import BertModel
class BertBiLSTMCRF(nn.Module):
def __init__(self, bert_path, num_tags):
super(BertBiLSTMCRF, self).__init__()
self.bert = BertModel.from_pretrained(bert_path)
self.lstm = nn.LSTM(input_size=self.bert.config.hidden_size,
hidden_size=self.bert.config.hidden_size // 2,
num_layers=1, bidirectional=True, batch_first=True)
self.dropout = nn.Dropout(p=0.5)
self.fc = nn.Linear(self.bert.config.hidden_size, num_tags)
self.crf = CRF(num_tags)
def forward(self, input_ids, attention_mask):
bert_output = self.bert(input_ids=input_ids, attention_mask=attention_mask)[0]
lstm_output, _ = self.lstm(bert_output)
lstm_output = self.dropout(lstm_output)
emissions = self.fc(lstm_output)
return emissions
def loss(self, input_ids, attention_mask, tags):
emissions = self.forward(input_ids, attention_mask)
loss = self.crf(emissions, tags, mask=attention_mask.byte(), reduction='mean')
return -loss
def decode(self, input_ids, attention_mask):
emissions = self.forward(input_ids, attention_mask)
return self.crf.decode(emissions, attention_mask.byte())
```
阅读全文