使用tensorflow怎么把RNN路径学习训练代码改成biRNN路径学习训练
时间: 2023-12-08 15:06:39 浏览: 76
RNN深度学习网络的训练matlab仿真+操作视频
5星 · 资源好评率100%
将RNN改成biRNN可以通过在RNN层前加一个双向层来实现。下面是一个使用TensorFlow实现biRNN路径学习训练的示例代码:
```python
import tensorflow as tf
# 定义输入和输出的维度
num_input = 28
timesteps = 28
num_hidden = 128
num_classes = 10
# 定义输入占位符
X = tf.placeholder("float", [None, timesteps, num_input])
Y = tf.placeholder("float", [None, num_classes])
# 定义双向RNN层
fw_cell = tf.contrib.rnn.BasicLSTMCell(num_hidden, forget_bias=1.0)
bw_cell = tf.contrib.rnn.BasicLSTMCell(num_hidden, forget_bias=1.0)
outputs, _ = tf.nn.bidirectional_dynamic_rnn(fw_cell, bw_cell, X, dtype=tf.float32)
# 将双向RNN的输出拼接起来
output = tf.concat(outputs, 2)
# 定义输出层
weight = tf.Variable(tf.random_normal([2*num_hidden, num_classes]))
bias = tf.Variable(tf.random_normal([num_classes]))
output = tf.transpose(output, [1, 0, 2])
last = tf.gather(output, int(output.get_shape()[0])-1)
prediction = tf.matmul(last, weight) + bias
# 定义损失函数和优化器
loss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=prediction, labels=Y))
optimizer = tf.train.AdamOptimizer(learning_rate=0.01).minimize(loss)
# 定义准确率
correct_prediction = tf.equal(tf.argmax(prediction, 1), tf.argmax(Y, 1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
# 训练模型
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
for i in range(1000):
batch_x, batch_y = mnist.train.next_batch(128)
batch_x = batch_x.reshape((128, timesteps, num_input))
sess.run(optimizer, feed_dict={X: batch_x, Y: batch_y})
if i % 100 == 0:
acc = sess.run(accuracy, feed_dict={X: batch_x, Y: batch_y})
loss_value = sess.run(loss, feed_dict={X: batch_x, Y: batch_y})
print("Iter " + str(i) + ", Minibatch Loss= " + \
"{:.6f}".format(loss_value) + ", Training Accuracy= " + \
"{:.5f}".format(acc))
```
在这个代码中,我们添加了一个双向RNN层,并将其输出拼接起来作为输出层的输入。其他部分与标准的RNN路径学习训练的代码类似。
阅读全文