c# Fluery算法构造欧拉回路
时间: 2024-02-05 22:05:21 浏览: 93
以下是使用C#实现Fleury算法构造欧拉回路的示例代码:
```csharp
using System;
using System.Collections.Generic;
class Graph
{
private int V; // 图中顶点的数量
private List<int>[] adj; // 存储图的邻接表
// 构造函数
public Graph(int v)
{
V = v;
adj = new List<int>[V];
for (int i = 0; i < V; ++i)
{
adj[i] = new List<int>();
}
}
// 添加一条边
public void AddEdge(int v, int w)
{
adj[v].Add(w);
adj[w].Add(v);
}
// 从顶点v开始进行DFS遍历
private void DFS(int v, bool[] visited)
{
visited[v] = true;
foreach (int i in adj[v])
{
if (!visited[i])
{
DFS(i, visited);
}
}
}
// 判断图是否连通
private bool IsConnected()
{
bool[] visited = new bool[V];
int i;
for (i = 0; i < V; ++i)
{
visited[i] = false;
}
for (i = 0; i < V; ++i)
{
if (adj[i].Count != 0)
{
break;
}
}
if (i == V)
{
return true;
}
DFS(i, visited);
for (i = 0; i < V; ++i)
{
if (!visited[i] && adj[i].Count > 0)
{
return false;
}
}
return true;
}
// 判断顶点v的度数
private int Degree(int v)
{
int degree = 0;
foreach (int i in adj[v])
{
++degree;
}
return degree;
}
// 从顶点v开始进行Fleury算法构造欧拉回路
private void Fleury(int v, List<int> circuit)
{
for (int i = 0; i < adj[v].Count; ++i)
{
int w = adj[v][i];
if (Degree(v) == 1) // 如果顶点v的度数为1,则直接将v和w之间的边加入欧拉回路中
{
circuit.Add(w);
adj[v].Remove(w);
adj[w].Remove(v);
Fleury(w, circuit);
}
else if (IsBridge(v, w)) // 如果v和w之间的边是桥,则将v和w之间的边加入欧拉回路中
{
circuit.Add(w);
adj[v].Remove(w);
adj[w].Remove(v);
Fleury(w, circuit);
}
}
}
// 判断边(v, w)是否是桥
private bool IsBridge(int v, int w)
{
adj[v].Remove(w);
adj[w].Remove(v);
bool[] visited = new bool[V];
int count1 = CountComponents(visited);
adj[v].Add(w);
adj[w].Add(v);
int count2 = CountComponents(visited);
adj[v].Remove(w);
adj[w].Remove(v);
return (count1 > count2);
}
// 计算图的连通分量数量
private int CountComponents(bool[] visited)
{
int count = 0;
for (int i = 0; i < V; ++i)
{
visited[i] = false;
}
for (int i = 0; i < V; ++i)
{
if (!visited[i] && adj[i].Count > 0)
{
DFS(i, visited);
++count;
}
}
return count;
}
// 构造欧拉回路
public List<int> EulerianCircuit()
{
List<int> circuit = new List<int>();
if (!IsConnected())
{
return circuit;
}
int oddDegreeVertices = 0;
int startVertex = 0;
for (int i = 0; i < V; ++i)
{
if (Degree(i) % 2 != 0)
{
++oddDegreeVertices;
startVertex = i;
}
}
if (oddDegreeVertices > 2)
{
return circuit;
}
Fleury(startVertex, circuit);
return circuit;
}
}
class Program
{
static void Main(string[] args)
{
Graph g = new Graph(5);
g.AddEdge(1, 0);
g.AddEdge(0, 2);
g.AddEdge(2, 1);
g.AddEdge(0, 3);
g.AddEdge(3, 4);
List<int> circuit = g.EulerianCircuit();
if (circuit.Count == 0)
{
Console.WriteLine("No Eulerian circuit");
}
else
{
Console.Write("Eulerian circuit: ");
foreach (int i in circuit)
{
Console.Write(i + " ");
}
Console.WriteLine();
}
}
}
```
阅读全文