运用Advertising and Sales数据做多元线性回归分析,写出python代码
时间: 2023-12-14 20:40:12 浏览: 171
首先,我们需要导入必要的Python库,包括pandas、numpy和sklearn。代码如下:
```python
import pandas as pd
import numpy as np
from sklearn.linear_model import LinearRegression
```
接下来,我们需要读取数据集并存储为DataFrame对象。在这里,我们使用一个名为"Advertising.csv"的数据集作为示例。代码如下:
```python
df = pd.read_csv("Advertising.csv", index_col=0)
```
然后,我们需要准备数据,将特征和目标变量分离。特征是广告投放在电视、广播和报纸上的支出,目标变量是销售额。代码如下:
```python
X = df[['TV', 'radio', 'newspaper']]
y = df['sales']
```
现在,我们可以创建一个多元线性回归模型,并将特征和目标变量传递给它。代码如下:
```python
lr = LinearRegression()
lr.fit(X, y)
```
最后,我们可以输出模型的系数和截距,以及模型的R²得分。代码如下:
```python
print("Coefficients: ", lr.coef_)
print("Intercept: ", lr.intercept_)
print("R² Score: ", lr.score(X, y))
```
完整的代码如下:
```python
import pandas as pd
import numpy as np
from sklearn.linear_model import LinearRegression
df = pd.read_csv("Advertising.csv", index_col=0)
X = df[['TV', 'radio', 'newspaper']]
y = df['sales']
lr = LinearRegression()
lr.fit(X, y)
print("Coefficients: ", lr.coef_)
print("Intercept: ", lr.intercept_)
print("R² Score: ", lr.score(X, y))
```
阅读全文
相关推荐
![html](https://img-home.csdnimg.cn/images/20241231044918.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![docx](https://img-home.csdnimg.cn/images/20241231044901.png)
![pdf](https://img-home.csdnimg.cn/images/20241231044930.png)
![pdf](https://img-home.csdnimg.cn/images/20241231044930.png)
![rar](https://img-home.csdnimg.cn/images/20241231044955.png)
![-](https://img-home.csdnimg.cn/images/20241226111658.png)
![-](https://img-home.csdnimg.cn/images/20241226111658.png)
![-](https://img-home.csdnimg.cn/images/20241226111658.png)
![-](https://img-home.csdnimg.cn/images/20241226111658.png)
![-](https://img-home.csdnimg.cn/images/20241226111658.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)