实训任务4: Hadoop综合操作
时间: 2024-12-30 08:31:40 浏览: 10
### Hadoop 综合操作实训任务指南
#### 1. 环境搭建
为了顺利完成Hadoop综合操作的实训任务,环境配置至关重要。建议采用稳定高效的操作系统,并安装兼容的数据库系统来辅助数据存储与管理[^2]。
对于Hadoop集群本身,则需确保所有节点已正确部署并启动必要的服务组件,包括但不限于NameNode、DataNode、ResourceManager和NodeManager等核心进程。
```bash
# 启动HDFS文件系统
$ start-dfs.sh
# 启动YARN资源调度器
$ start-yarn.sh
```
#### 2. 数据上传至HDFS
通过命令行工具或API接口将本地文件传输到分布式文件系统(HDFS)中,以便后续处理分析:
```bash
# 将本地文件复制到HDFS指定目录下
hdfs dfs -put /path/to/local/file.txt /user/hadoop/input/
```
#### 3. 编写MapReduce作业
基于具体业务需求编写相应的Mapper/Reducer逻辑实现类,在此过程中可以利用Eclipse或其他集成开发环境(IDE),并通过设置断点的方式借助其内置调试功能优化代码性能[^4]。
下面是一个简单的WordCount MapReduce例子:
```java
// WordCount.java
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
public class WordCount {
public static void main(String[] args) throws Exception {
Configuration conf = new Configuration();
Job job = Job.getInstance(conf, "word count");
job.setJarByClass(WordCount.class);
job.setMapperClass(TokenizingMapper.class);
job.setCombinerClass(IntSumReducer.class);
job.setReducerClass(IntSumReducer.class);
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(IntWritable.class);
FileInputFormat.addInputPath(job, new Path(args[0]));
FileOutputFormat.setOutputPath(job, new Path(args[1]));
System.exit(job.waitForCompletion(true) ? 0 : 1);
}
public static class TokenizingMapper extends Mapper<Object, Text, Text, IntWritable> {
private final static IntWritable one = new IntWritable(1);
private Text word = new Text();
@Override
protected void map(Object key, Text value, Context context) throws IOException, InterruptedException {
StringTokenizer itr = new StringTokenizer(value.toString());
while (itr.hasMoreTokens()) {
word.set(itr.nextToken());
context.write(word, one);
}
}
}
public static class IntSumReducer extends Reducer<Text,IntWritable,Text,IntWritable> {
private IntWritable result = new IntWritable();
@Override
protected void reduce(Text key, Iterable<IntWritable> values, Context context) throws IOException, InterruptedException {
int sum = 0;
for (IntWritable val : values) {
sum += val.get();
}
result.set(sum);
context.write(key, result);
}
}
}
```
编译打包上述Java源码后提交给YARN运行:
```bash
javac -classpath `yarn classpath` -d . WordCount.java
jar cf wc.jar *.class
hadoop jar wc.jar WordCount input output
```
#### 4. 结果验证与可视化呈现
最后一步是对计算结果进行检验确认无误之后再考虑如何直观有效地向受众传达信息。此时可选用合适的图表库绘制统计图形或将汇总后的统计数据导出保存为CSV格式供第三方软件读取解析.
阅读全文