transform_train = transforms.Compose([ transforms.RandomCrop(32, padding=4), transforms.RandomHorizontalFlip(), transforms.ToTensor(), transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)) ]) transform_test = transforms.Compose([ transforms.ToTensor(), transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)) ]) trainset = torchvision.datasets.CIFAR10(root='../data', train=True, download=True, transform=transform_train) trainloader = torch.utils.data.DataLoader(trainset, batch_size=BATCH_SIZE, shuffle=True, num_workers=2) testset = torchvision.datasets.CIFAR10(root='../data', train=False, download=True, transform=transform_test) testloader = torch.utils.data.DataLoader(testset, batch_size=100, shuffle=False, num_workers=2)
时间: 2024-04-20 09:22:28 浏览: 149
train_data.rar_BP 识别_train_人脸朝向_人脸识别 BP_数据训练 matlab
这段代码是用于加载 CIFAR-10 数据集并设置数据增强和标准化的转换。CIFAR-10 是一个常用的计算机视觉数据集,包含了10个类别的60000张32x32彩色图像。
首先,`transforms.RandomCrop` 随机裁剪图像到指定的大小(这里是32x32),并进行填充。
然后,`transforms.RandomHorizontalFlip` 随机水平翻转图像,增加数据集的多样性。
接下来,`transforms.ToTensor` 将图像转换为张量,并将像素值缩放到0到1之间。
最后,`transforms.Normalize` 对图像进行归一化处理,减去均值(0.4914, 0.4822, 0.4465)并除以标准差(0.2023, 0.1994, 0.2010)。
然后,通过 `torchvision.datasets.CIFAR10` 加载训练集和测试集。训练集使用 `transform_train` 进行数据增强和标准化,测试集使用 `transform_test` 进行标准化。
最后,通过 `torch.utils.data.DataLoader` 创建训练集和测试集的数据加载器,可以指定批次大小、是否打乱数据以及并行加载的线程数。
阅读全文