解释一下data_transforms = transforms.Compose(transform_list)
时间: 2023-06-08 17:08:18 浏览: 201
data_transforms = transforms.Compose(transform_list)是一个PyTorch的数据预处理函数。它将一系列图像预处理转换组合成单个可调用对象,以便将其用于数据的有效处理。其中,transform_list是一个包括各种数据预处理函数(如旋转,剪裁,缩放等)的列表,它们按照给定的顺序进行调用以处理输入的图像数据。通过使用该函数,我们可以有效地将数据转换为模型可以使用的格式,并同时提高模型的精度和效率。
相关问题
# 定义数据集 train_data = torchvision.datasets.ImageFolder(os.path.join(data_dir, 'train'), transform=transform_train) val_data = torchvision.datasets.ImageFolder(os.path.join(data_dir, 'val'), transform=transform_val) # 定义数据加载器 train_loader = torch.utils.data.DataLoader(train_data, batch_size=32, shuffle=True, num_workers=4) val_loader = torch.utils.data.DataLoader(val_data, batch_size=32, shuffle=False, num_workers=4),好像并没有按照一定的比例你分割数据集
确实,这段代码没有明确地按照一定的比例划分数据集。这里的 `train` 和 `val` 目录分别代表着训练集和验证集,而 `ImageFolder` 类会自动读取这些目录下的文件,并且将它们解释为不同的类别。因此,要按照一定的比例划分数据集,需要先手动将数据集文件夹按照比例划分成两个子文件夹,例如 `train` 和 `val`,然后再将这两个文件夹的路径传递给 `ImageFolder` 类来读取数据。具体地,可以按照以下步骤进行操作:
1. 首先确定划分比例,例如将数据集划分为 80% 的训练集和 20% 的验证集。
2. 在数据集根目录下创建 `train` 和 `val` 两个文件夹,并在这两个文件夹中分别创建与数据集中类别相同的子文件夹。
3. 将数据集中的所有图片按照比例分别复制到 `train` 和 `val` 两个文件夹的对应类别子文件夹中。
4. 在代码中分别传递 `train` 和 `val` 两个文件夹的路径给 `ImageFolder` 类来读取数据。
下面是一个示例代码,用于按照 80% - 20% 的比例划分数据集:
```python
import os
import torchvision.transforms as transforms
import torchvision.datasets as datasets
# 定义数据预处理
transform = transforms.Compose([
transforms.Resize(256),
transforms.CenterCrop(224),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
])
# 定义数据集路径
data_dir = 'path/to/dataset'
# 将数据集按照 80% - 20% 的比例划分为训练集和验证集
train_dir = os.path.join(data_dir, 'train')
val_dir = os.path.join(data_dir, 'val')
if not os.path.exists(val_dir):
os.makedirs(val_dir)
for class_dir in os.listdir(train_dir):
class_path = os.path.join(train_dir, class_dir)
if os.path.isdir(class_path):
os.makedirs(os.path.join(val_dir, class_dir))
file_list = os.listdir(class_path)
num_val = int(len(file_list) * 0.2)
for i in range(num_val):
file_name = file_list[i]
src_path = os.path.join(class_path, file_name)
dst_path = os.path.join(val_dir, class_dir, file_name)
os.rename(src_path, dst_path)
# 定义数据集
train_data = datasets.ImageFolder(train_dir, transform=transform)
val_data = datasets.ImageFolder(val_dir, transform=transform)
# 定义数据加载器
train_loader = torch.utils.data.DataLoader(train_data, batch_size=32, shuffle=True, num_workers=4)
val_loader = torch.utils.data.DataLoader(val_data, batch_size=32, shuffle=False, num_workers=4)
```
在这个示例代码中,我们首先定义了数据预处理方式,并且将数据集划分为 `train` 和 `val` 两个文件夹。然后,我们使用 `os.listdir()` 函数遍历了 `train` 目录下的所有类别子文件夹,并且在 `val` 目录下创建了相同的类别子文件夹。然后我们通过计算每个类别子文件夹下的图片数量,来确定需要将多少张图片移动到验证集中。最后,我们使用 `datasets.ImageFolder()` 类来读取数据,并且定义了数据加载器。
LDAM损失函数pytorch代码如下:class LDAMLoss(nn.Module): def init(self, cls_num_list, max_m=0.5, weight=None, s=30): super(LDAMLoss, self).init() m_list = 1.0 / np.sqrt(np.sqrt(cls_num_list)) m_list = m_list * (max_m / np.max(m_list)) m_list = torch.cuda.FloatTensor(m_list) self.m_list = m_list assert s > 0 self.s = s if weight is not None: weight = torch.FloatTensor(weight).cuda() self.weight = weight self.cls_num_list = cls_num_list def forward(self, x, target): index = torch.zeros_like(x, dtype=torch.uint8) index_float = index.type(torch.cuda.FloatTensor) batch_m = torch.matmul(self.m_list[None, :], index_float.transpose(1,0)) # 0,1 batch_m = batch_m.view((16, 1)) # size=(batch_size, 1) (-1,1) x_m = x - batch_m output = torch.where(index, x_m, x) if self.weight is not None: output = output * self.weight[None, :] target = torch.flatten(target) # 将 target 转换成 1D Tensor logit = output * self.s return F.cross_entropy(logit, target, weight=self.weight) 模型部分参数如下:# 设置全局参数 model_lr = 1e-5 BATCH_SIZE = 16 EPOCHS = 50 DEVICE = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu') use_amp = True use_dp = True classes = 7 resume = None CLIP_GRAD = 5.0 Best_ACC = 0 #记录最高得分 use_ema=True model_ema_decay=0.9998 start_epoch=1 seed=1 seed_everything(seed) # 数据增强 mixup mixup_fn = Mixup( mixup_alpha=0.8, cutmix_alpha=1.0, cutmix_minmax=None, prob=0.1, switch_prob=0.5, mode='batch', label_smoothing=0.1, num_classes=classes) # 读取数据集 dataset_train = datasets.ImageFolder('/home/adminis/hpy/ConvNextV2_Demo/RAF-DB/RAF/train', transform=transform) dataset_test = datasets.ImageFolder("/home/adminis/hpy/ConvNextV2_Demo/RAF-DB/RAF/valid", transform=transform_test)# 导入数据 train_loader = torch.utils.data.DataLoader(dataset_train, batch_size=BATCH_SIZE, shuffle=True,drop_last=True) test_loader = torch.utils.data.DataLoader(dataset_test, batch_size=BATCH_SIZE, shuffle=False) 帮我用pytorch实现模型在模型训练中使用LDAM损失函数
好的,以下是使用LDAM损失函数训练模型的Pytorch代码:
```python
import torch
import torch.nn as nn
import torch.nn.functional as F
import numpy as np
from torchvision import datasets, transforms
from ldam_loss import LDAMLoss
# 定义模型
class MyModel(nn.Module):
def __init__(self, num_classes):
super(MyModel, self).__init__()
self.num_classes = num_classes
self.features = nn.Sequential(
nn.Conv2d(3, 32, kernel_size=3, stride=1, padding=1),
nn.BatchNorm2d(32),
nn.ReLU(inplace=True),
nn.MaxPool2d(kernel_size=2, stride=2),
nn.Conv2d(32, 64, kernel_size=3, stride=1, padding=1),
nn.BatchNorm2d(64),
nn.ReLU(inplace=True),
nn.MaxPool2d(kernel_size=2, stride=2),
nn.Conv2d(64, 128, kernel_size=3, stride=1, padding=1),
nn.BatchNorm2d(128),
nn.ReLU(inplace=True),
nn.MaxPool2d(kernel_size=2, stride=2),
)
self.classifier = nn.Sequential(
nn.Linear(128 * 4 * 4, 256),
nn.ReLU(inplace=True),
nn.Linear(256, num_classes),
)
def forward(self, x):
x = self.features(x)
x = x.view(x.size(0), -1)
x = self.classifier(x)
return x
# 设置超参数
model_lr = 1e-4
BATCH_SIZE = 16
EPOCHS = 50
DEVICE = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
use_amp = True
use_dp = True
classes = 7
resume = None
CLIP_GRAD = 5.0
Best_ACC = 0
use_ema = True
model_ema_decay = 0.9998
start_epoch = 1
seed = 1
# 设置随机种子
def seed_everything(seed):
torch.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
np.random.seed(seed)
seed_everything(seed)
# 定义数据增强
transform = transforms.Compose([
transforms.Resize(224),
transforms.RandomHorizontalFlip(),
transforms.RandomRotation(10),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225])
])
transform_test = transforms.Compose([
transforms.Resize(224),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225])
])
# 定义数据集
dataset_train = datasets.ImageFolder('/home/adminis/hpy/ConvNextV2_Demo/RAF-DB/RAF/train', transform=transform)
dataset_test = datasets.ImageFolder("/home/adminis/hpy/ConvNextV2_Demo/RAF-DB/RAF/valid", transform=transform_test)
# 定义数据加载器
train_loader = torch.utils.data.DataLoader(dataset_train, batch_size=BATCH_SIZE, shuffle=True, drop_last=True)
test_loader = torch.utils.data.DataLoader(dataset_test, batch_size=BATCH_SIZE, shuffle=False)
# 定义模型及优化器
model = MyModel(num_classes=classes).to(DEVICE)
optimizer = torch.optim.Adam(model.parameters(), lr=model_lr)
# 使用LDAM损失函数
cls_num_list = [dataset_train.targets.count(i) for i in range(classes)]
criterion = LDAMLoss(cls_num_list=cls_num_list, max_m=0.5, weight=None, s=30)
# 训练模型
for epoch in range(start_epoch, EPOCHS+1):
model.train()
for i, (data, target) in enumerate(train_loader):
data, target = data.to(DEVICE), target.to(DEVICE)
mixup_data, mixup_target = mixup_fn(data, target) # 数据增强
optimizer.zero_grad()
output = model(mixup_data)
loss = criterion(output, mixup_target)
if use_dp:
loss.backward()
torch.nn.utils.clip_grad_norm_(model.parameters(), CLIP_GRAD)
else:
with amp.scale_loss(loss, optimizer) as scaled_loss:
scaled_loss.backward()
torch.nn.utils.clip_grad_norm_(amp.master_params(optimizer), CLIP_GRAD)
optimizer.step()
if use_ema:
ema_model = ModelEMA(model, decay=model_ema_decay)
ema_model.update(model)
else:
ema_model = None
test_acc = test(model, test_loader, DEVICE)
if test_acc > Best_ACC:
Best_ACC = test_acc
save_checkpoint({
'epoch': epoch,
'state_dict': model.state_dict(),
'optimizer': optimizer.state_dict(),
'Best_ACC': Best_ACC,
}, is_best=True)
```
阅读全文