def __getitem__(self, index): if self.args.cached: (label, _, image) = self.data[index] else: (label, _file) = self.file_indexes[index] image = self._load_rml(_file) n_label = self.classes.index(label) return torch.tensor(image).float(), torch.tensor(n_label).long()把这段代码基于pytorch改为基于mindspore
时间: 2024-03-01 12:51:02 浏览: 97
以下是基于MindSpore的代码实现:
```
import mindspore.dataset as ds
import mindspore.dataset.transforms.py_transforms as py_transforms
import mindspore.common.dtype as mstype
import numpy as np
class MyDataset:
def __init__(self, args):
self.args = args
self.classes = sorted(list(set([item[0] for item in self.args.data])))
self.data = self.args.data
self.file_indexes = [(item[0], idx) for idx, item in enumerate(self.args.data)]
def _load_rml(self, file):
# 加载数据的代码
pass
def __getitem__(self, index):
if self.args.cached:
(label, _, image) = self.data[index]
else:
(label, file_idx) = self.file_indexes[index]
image = self._load_rml(self.args.data[file_idx][1])
n_label = self.classes.index(label)
return np.array(image).astype(np.float32), np.array(n_label).astype(np.int32)
def __len__(self):
return len(self.file_indexes)
# 数据增强
transform = py_transforms.Compose([
py_transforms.Resize((224, 224)),
py_transforms.RandomHorizontalFlip(),
py_transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
])
# 数据集加载
ds.config.set_seed(1)
ds_train = ds.GeneratorDataset(MyDataset(args), ["image", "label"])
ds_train = ds_train.shuffle(buffer_size=1000)
ds_train = ds_train.batch(batch_size=args.batch_size, drop_remainder=True)
ds_train = ds_train.map(operations=transform, input_columns="image", num_parallel_workers=4)
ds_train = ds_train.map(operations=lambda x, y: (mindspore.Tensor(x, mstype.float32), mindspore.Tensor(y, mstype.int32)))
```
注意:MindSpore的数据增强需要使用`transforms`模块中的函数,而数据集加载则需要使用`GeneratorDataset`类。在MindSpore中,需要使用`mindspore.Tensor`将数据转换为张量类型。
阅读全文