def __getitem__(self, index): if self.args.cached: (label, _, image) = self.data[index] else: (label, _file) = self.file_indexes[index] image = self._load_rml(_file) n_label = self.classes.index(label) return torch.tensor(image).float(), torch.tensor(n_label).long()把这段代码基于pytorch改为基于mindspore

时间: 2024-03-01 09:51:02 浏览: 20
以下是基于MindSpore的代码实现: ``` import mindspore.dataset as ds import mindspore.dataset.transforms.py_transforms as py_transforms import mindspore.common.dtype as mstype import numpy as np class MyDataset: def __init__(self, args): self.args = args self.classes = sorted(list(set([item[0] for item in self.args.data]))) self.data = self.args.data self.file_indexes = [(item[0], idx) for idx, item in enumerate(self.args.data)] def _load_rml(self, file): # 加载数据的代码 pass def __getitem__(self, index): if self.args.cached: (label, _, image) = self.data[index] else: (label, file_idx) = self.file_indexes[index] image = self._load_rml(self.args.data[file_idx][1]) n_label = self.classes.index(label) return np.array(image).astype(np.float32), np.array(n_label).astype(np.int32) def __len__(self): return len(self.file_indexes) # 数据增强 transform = py_transforms.Compose([ py_transforms.Resize((224, 224)), py_transforms.RandomHorizontalFlip(), py_transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) ]) # 数据集加载 ds.config.set_seed(1) ds_train = ds.GeneratorDataset(MyDataset(args), ["image", "label"]) ds_train = ds_train.shuffle(buffer_size=1000) ds_train = ds_train.batch(batch_size=args.batch_size, drop_remainder=True) ds_train = ds_train.map(operations=transform, input_columns="image", num_parallel_workers=4) ds_train = ds_train.map(operations=lambda x, y: (mindspore.Tensor(x, mstype.float32), mindspore.Tensor(y, mstype.int32))) ``` 注意:MindSpore的数据增强需要使用`transforms`模块中的函数,而数据集加载则需要使用`GeneratorDataset`类。在MindSpore中,需要使用`mindspore.Tensor`将数据转换为张量类型。

相关推荐

class SeqList: def __init__(self, maxsize=None): self.maxsize = maxsize self.length = 0 self.data = [None] * self.maxsize def __len__(self): return self.length def __getitem__(self, index): if 0 <= index < self.length: return self.data[index] else: raise IndexError("Index out of range") def __setitem__(self, index, value): if 0 <= index < self.length: self.data[index] = value else: raise IndexError("Index out of range") def __contains__(self, value): return value in self.data def index(self, value): for i in range(self.length): if self.data[i] == value: return i raise ValueError("Value not found") def count(self, value): return self.data.count(value) def insert(self, index, value): if self.length >= self.maxsize: raise Exception("SeqList is full") if index < 0: index = 0 elif index > self.length: index = self.length for i in range(self.length-1, index-1, -1): self.data[i+1] = self.data[i] self.data[index] = value self.length += 1 def remove(self, value): for i in range(self.length): if self.data[i] == value: for j in range(i, self.length-1): self.data[j] = self.data[j+1] self.data[self.length-1] = None self.length -= 1 return raise ValueError("Value not found") def pop(self, index=None): if not self.length: raise Exception("SeqList is empty") if index is None: index = self.length - 1 value = self[index] self.remove(value) return value def add(self, value): self.insert(self.length, value) def insert_ordered(self, value): index = 0 while index < self.length and self.data[index] < value: index += 1 self.insert(index, value) 给这段代码的每小段加注释

class Dn_datasets(Dataset): def __init__(self, data_root, data_dict, transform, load_all=False, to_gray=False, s_factor=1, repeat_crop=1): self.data_root = data_root self.transform = transform self.load_all = load_all self.to_gray = to_gray self.repeat_crop = repeat_crop if self.load_all is False: self.data_dict = data_dict else: self.data_dict = [] for sample_info in data_dict: sample_data = Image.open('/'.join((self.data_root, sample_info['path']))).copy() if sample_data.mode in ['RGBA']: sample_data = sample_data.convert('RGB') width = sample_info['width'] height = sample_info['height'] sample = { 'data': sample_data, 'width': width, 'height': height } self.data_dict.append(sample) def __len__(self): return len(self.data_dict) def __getitem__(self, idx): sample_info = self.data_dict[idx] if self.load_all is False: sample_data = Image.open('/'.join((self.data_root, sample_info['path']))) if sample_data.mode in ['RGBA']: sample_data = sample_data.convert('RGB') else: sample_data = sample_info['data'] if self.to_gray: sample_data = sample_data.convert('L') # crop (w_start, h_start, w_end, h_end) image = sample_data target = sample_data sample = {'image': image, 'target': target} if self.repeat_crop != 1: image_stacks = [] target_stacks = [] for i in range(self.repeat_crop): sample_patch = self.transform(sample) image_stacks.append(sample_patch['image']) target_stacks.append(sample_patch['target']) return torch.stack(image_stacks), torch.stack(target_stacks) else: sample = self.transform(sample) return sample['image'], sample['target']

最新推荐

recommend-type

源代码-ajax即时聊天程序(新手学习推荐).zip

源代码-ajax即时聊天程序(新手学习推荐).zip
recommend-type

python读取excel数据.doc

以下是一个简单的Python代码,用于在控制台上打印一个看起来像爱心的形状。这个代码使用了ASCII字符来创建形状。 python print('\n'.join([''.join([('Love'[(x-y)%4] if ((x*0.05)**2+(y*0.1)**2-1)**3-(x*0.05)**2*(y*0.1)**3 <= 0 else ' ') for x in range(-30, 30)]) for y in range(15, -15, -1)])) 这个代码使用了数学公式来生成心形。但是,由于ASCII字符的限制,这个心形可能看起来不是很完美。 如果你想要一个更详细和定制化的心形,你可能需要使用图形库,如PIL(Python Imaging Library)或matplotlib。但是,这些库通常用于创建图像文件或在图形用户界面上绘制,而不是在控制台上打印。 另外,这里有一个使用turtle模块在图形窗口中绘制爱心的简单示例: python import turtle # 创建一个新的turtle对象 heart = turtle.Turtl
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

实现实时数据湖架构:Kafka与Hive集成

![实现实时数据湖架构:Kafka与Hive集成](https://img-blog.csdnimg.cn/img_convert/10eb2e6972b3b6086286fc64c0b3ee41.jpeg) # 1. 实时数据湖架构概述** 实时数据湖是一种现代数据管理架构,它允许企业以低延迟的方式收集、存储和处理大量数据。与传统数据仓库不同,实时数据湖不依赖于预先定义的模式,而是采用灵活的架构,可以处理各种数据类型和格式。这种架构为企业提供了以下优势: - **实时洞察:**实时数据湖允许企业访问最新的数据,从而做出更明智的决策。 - **数据民主化:**实时数据湖使各种利益相关者都可
recommend-type

云原生架构与soa架构区别?

云原生架构和SOA架构是两种不同的架构模式,主要有以下区别: 1. 设计理念不同: 云原生架构的设计理念是“设计为云”,注重应用程序的可移植性、可伸缩性、弹性和高可用性等特点。而SOA架构的设计理念是“面向服务”,注重实现业务逻辑的解耦和复用,提高系统的灵活性和可维护性。 2. 技术实现不同: 云原生架构的实现技术包括Docker、Kubernetes、Service Mesh等,注重容器化、自动化、微服务等技术。而SOA架构的实现技术包括Web Services、消息队列等,注重服务化、异步通信等技术。 3. 应用场景不同: 云原生架构适用于云计算环境下的应用场景,如容器化部署、微服务
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

实现实时监控告警系统:Kafka与Grafana整合

![实现实时监控告警系统:Kafka与Grafana整合](https://imgconvert.csdnimg.cn/aHR0cHM6Ly9tbWJpei5xcGljLmNuL21tYml6X2pwZy9BVldpY3ladXVDbEZpY1pLWmw2bUVaWXFUcEdLT1VDdkxRSmQxZXB5R1lxaWNlUjA2c0hFek5Qc3FyRktudFF1VDMxQVl3QTRXV2lhSWFRMEFRc0I1cW1ZOGcvNjQw?x-oss-process=image/format,png) # 1.1 Kafka集群架构 Kafka集群由多个称为代理的服务器组成,这
recommend-type

数字舵机控制程序流程图

以下是数字舵机控制程序的流程图: ![数字舵机控制程序流程图](https://i.imgur.com/2fgKUQs.png) 1. 初始化引脚:设置舵机控制引脚为输出模式。 2. 初始化舵机:将舵机控制引脚输出的PWM信号设置为初始值,初始化舵机的位置。 3. 接收控制信号:通过串口或者其他方式接收舵机控制信号。 4. 解析控制信号:解析接收到的控制信号,确定舵机需要转动的角度和方向。 5. 转动舵机:根据解析后的控制信号,设置舵机控制引脚输出的PWM信号的占空比,使舵机转动到目标位置。 6. 延时:为了保证舵机转动到目标位置后稳定,需要延时一段时间。 7. 返回接收控制信