class Iterator(Dataset): def __init__(self, data_dict, batch_size=32, shuffle=False, num_workers=1): self.data_dict = data_dict self.keys = list(data_dict.keys()) self.iter = DataLoader(dataset=self, batch_size=batch_size, shuffle=shuffle, num_workers=num_workers) def __getitem__(self, index): return {k: self.data_dict[k][index] for k in self.keys} def __len__(self): return self.data_dict["SessionId"].shape[0]代码解释

时间: 2023-06-05 16:04:18 浏览: 336
这是一个 Python 代码段,定义了一个名为 Iterator 的类,继承自 Dataset 类。该类的属性包括 data_dict、keys 和 iter,分别表示数据集字典、数据集特征名列表和数据集加载器。类还定义了三个方法,__getitem__、__len__ 和 __init__,分别表示获取数据、获取数据集长度和初始化数据集。具体实现上,__getitem__ 方法通过遍历 self.keys 列表,返回指定特征的数据,__len__ 方法返回 SessionId 特征的长度,__init__ 方法则根据传入的参数初始化 data_dict、keys 和 iter 属性。
相关问题

import mindspore.nn as nn from mindspore.common.initializer import Normal class LeNet5(nn.Cell): def __init__(self, num_class=10, num_channel=1): super(LeNet5, self).__init__() self.conv1 = nn.Conv2d(num_channel, 6, 5, pad_mode='valid') self.conv2 = nn.Conv2d(6, 16, 5, pad_mode='valid') self.fc1 = nn.Dense(16 * 5 * 5, 120, weight_init=Normal(0.02)) self.fc2 = nn.Dense(120, 84, weight_init=Normal(0.02)) self.fc3 = nn.Dense(84, num_class, weight_init=Normal(0.02)) self.relu = nn.ReLU() self.max_pool2d = nn.MaxPool2d(kernel_size=2, stride=2) self.flatten = nn.Flatten() # use the preceding operators to construct networks def construct(self, x): x = self.max_pool2d(self.relu(self.conv1(x))) x = self.max_pool2d(self.relu(self.conv2(x))) x = self.flatten(x) x = self.relu(self.fc1(x)) x = self.relu(self.fc2(x)) x = self.fc3(x) return x改变卷积层的卷积核大小、卷积通道数,用改变后的网络对手写字体进行识别

好的,让我理解一下你的问题。你想改变LeNet5模型的卷积层的卷积核大小和通道数,并使用修改后的模型对手写字体进行识别,对吗? 如果是这样的话,你可以按照以下步骤进行操作: 1. 修改LeNet5模型的卷积层的卷积核大小和通道数。例如,你可以将第一个卷积层的卷积核大小改为3,通道数改为10,将第二个卷积层的卷积核大小改为3,通道数改为20。 2. 使用修改后的模型对手写字体进行识别。你可以使用MNIST数据集进行测试。首先,你需要下载MNIST数据集并将其转换为MindSpore支持的格式。然后,你可以使用测试集对修改后的模型进行评估,计算其准确率。 下面是代码示例,供你参考: ``` python import mindspore.dataset as ds import mindspore.dataset.transforms.c_transforms as C import mindspore.dataset.vision.c_transforms as CV from mindspore import Tensor from mindspore import context from mindspore.train.serialization import load_checkpoint, load_param_into_net context.set_context(mode=context.GRAPH_MODE, device_target="CPU") # 加载LeNet5模型 network = LeNet5() # 修改卷积层的卷积核大小和通道数 network.conv1 = nn.Conv2d(1, 10, 3, pad_mode='valid') network.conv2 = nn.Conv2d(10, 20, 3, pad_mode='valid') # 加载训练好的模型参数 param_dict = load_checkpoint("lenet5.ckpt") load_param_into_net(network, param_dict) # 准备测试数据 mnist_ds = ds.MnistDataset("./MNIST_Data/", num_samples=10000, shuffle=False) mnist_ds = mnist_ds.map(input_columns="image", num_parallel_workers=4, operations= [C.Resize((32, 32)), CV.Rescale(1.0/255.0, 0.0), CV.HWC2CHW()]) mnist_ds = mnist_ds.batch(32) # 测试模型 acc = nn.Accuracy() for data in mnist_ds.create_tuple_iterator(): images, labels = data output = network(Tensor(images)) acc.update(labels, output) print("Accuracy: ", acc.eval()) ``` 注意,这里我将卷积层的卷积核大小改为了3,通道数改为了10和20,你可以根据自己的需要进行修改。同时,需要将MNIST数据集转换为MindSpore支持的格式,这里我使用了Resize、Rescale和HWC2CHW等操作。最后,使用Accuracy()计算模型的准确率。

mnist = tf.keras.datasets.mnist.load_data() train_img = mnist[0][0] # 表示训练集 构成的矩阵 表示的 图片 test_img = mnist[1][0] # 表示测试集 构成的矩阵 表示的 图片 train_label = mnist[0][1] # 表示训练集 的图片 表示的 数字是多少 test_label = mnist[1][1] with tf.Session() as sess: init = tf.global_variables_initializer() sess.run(init) start = time.time() for i in range(max_epoch): batch_xs, batch_ys = train_img.next_batch(100) # 此batch是个2维tuple,batch[0]是(100,784)的样本数据数组,batch[1]是(100,10)的样本标签数组 sess.run(train_step, feed_dict={xs: batch_xs, ys: batch_ys, keep_prob: keep_prob_rate}) if (i+1) % 50 == 0: print("step %d, test accuracy %g" % ((i+1), compute_accuracy( mnist.test_images, mnist.test_labels))) end = time.time() print('******************************************************') print("运行时间:%.2f秒" % (end - start)) 出现AttributeError: 'numpy.ndarray' object has no attribute 'next_batch'

根据你的代码,你尝试在 `train_img` 上调用 `next_batch` 属性,但是出现了 `AttributeError: 'numpy.ndarray' object has no attribute 'next_batch'` 的错误。 这个错误是因为 `train_img` 是一个 NumPy 数组对象,而 NumPy 数组没有名为 `next_batch` 的属性。根据你的代码逻辑,你可能想要使用 TensorFlow 中的数据集对象(例如 `tf.data.Dataset`)来获取批次数据。 你可以使用 `tf.data.Dataset.from_tensor_slices` 方法来创建一个数据集对象,并使用 `batch` 方法来获取批次数据。以下是一个示例: ```python import tensorflow as tf mnist = tf.keras.datasets.mnist.load_data() train_img = mnist[0][0] # 表示训练集 构成的矩阵 表示的 图片 train_label = mnist[0][1] # 表示训练集 的图片 表示的 数字是多少 # 创建数据集对象 dataset = tf.data.Dataset.from_tensor_slices((train_img, train_label)) # 对数据集进行乱序处理和批次化处理 dataset = dataset.shuffle(buffer_size=10000).batch(100) # 创建迭代器 iterator = dataset.make_initializable_iterator() next_batch = iterator.get_next() with tf.Session() as sess: init = tf.global_variables_initializer() sess.run(init) sess.run(iterator.initializer) # 初始化迭代器 start = time.time() for i in range(max_epoch): batch_xs, batch_ys = sess.run(next_batch) sess.run(train_step, feed_dict={xs: batch_xs, ys: batch_ys, keep_prob: keep_prob_rate}) if (i+1) % 50 == 0: print("step %d, test accuracy %g" % ((i+1), compute_accuracy( mnist.test_images, mnist.test_labels))) end = time.time() print('******************************************************') print("运行时间:%.2f秒" % (end - start)) ``` 这样,你就可以正确地获取批次数据并进行训练了。请确保你已经正确地定义了 `xs`、`ys`、`train_step`、`compute_accuracy` 等变量。如果还有其他问题,请提供更多的上下文或完整的代码,以便我能够更好地帮助你。
阅读全文

相关推荐

最新推荐

recommend-type

C++标准库:std_set作为一个有序集合

3. 查找元素:使用find函数可以在集合中查找元素,例如`std::set<int>::const_iterator result = set.find(98)`。 4. 交换集合:使用std::swap函数可以交换两个集合的内容,例如`std::swap(set, other)`。 5. 清楚...
recommend-type

Pandas的read_csv函数参数分析详解

26. **iterator**: 返回一个迭代器,允许分块读取大文件。 27. **chunksize**: 分块读取文件的大小,单位为行数。 28. **compression**: 支持的压缩方式,如'gzip', 'bz2', 'zip', 'xz', 'lzma'等。 29. **...
recommend-type

tensorflow中next_batch的具体使用

在TensorFlow中,`next_batch` 是一个非常重要的功能,它用于在训练神经网络时从数据集中批量获取样本。在大型数据集上进行训练时,批量处理数据可以显著提高效率并减少内存消耗。这里我们将详细探讨`next_batch`的...
recommend-type

医疗影像革命-YOLOv11实现病灶实时定位与三维重建技术解析.pdf

想深入掌握目标检测前沿技术?Yolov11绝对不容错过!作为目标检测领域的新星,Yolov11融合了先进算法与创新架构,具备更快的检测速度、更高的检测精度。它不仅能精准识别各类目标,还在复杂场景下展现出卓越性能。无论是学术研究,还是工业应用,Yolov11都能提供强大助力。阅读我们的技术文章,带你全方位剖析Yolov11,解锁更多技术奥秘!
recommend-type

Spring Websocket快速实现与SSMTest实战应用

标题“websocket包”指代的是一个在计算机网络技术中应用广泛的组件或技术包。WebSocket是一种网络通信协议,它提供了浏览器与服务器之间进行全双工通信的能力。具体而言,WebSocket允许服务器主动向客户端推送信息,是实现即时通讯功能的绝佳选择。 描述中提到的“springwebsocket实现代码”,表明该包中的核心内容是基于Spring框架对WebSocket协议的实现。Spring是Java平台上一个非常流行的开源应用框架,提供了全面的编程和配置模型。在Spring中实现WebSocket功能,开发者通常会使用Spring提供的注解和配置类,简化WebSocket服务端的编程工作。使用Spring的WebSocket实现意味着开发者可以利用Spring提供的依赖注入、声明式事务管理、安全性控制等高级功能。此外,Spring WebSocket还支持与Spring MVC的集成,使得在Web应用中使用WebSocket变得更加灵活和方便。 直接在Eclipse上面引用,说明这个websocket包是易于集成的库或模块。Eclipse是一个流行的集成开发环境(IDE),支持Java、C++、PHP等多种编程语言和多种框架的开发。在Eclipse中引用一个库或模块通常意味着需要将相关的jar包、源代码或者配置文件添加到项目中,然后就可以在Eclipse项目中使用该技术了。具体操作可能包括在项目中添加依赖、配置web.xml文件、使用注解标注等方式。 标签为“websocket”,这表明这个文件或项目与WebSocket技术直接相关。标签是用于分类和快速检索的关键字,在给定的文件信息中,“websocket”是核心关键词,它表明该项目或文件的主要功能是与WebSocket通信协议相关的。 文件名称列表中的“SSMTest-master”暗示着这是一个版本控制仓库的名称,例如在GitHub等代码托管平台上。SSM是Spring、SpringMVC和MyBatis三个框架的缩写,它们通常一起使用以构建企业级的Java Web应用。这三个框架分别负责不同的功能:Spring提供核心功能;SpringMVC是一个基于Java的实现了MVC设计模式的请求驱动类型的轻量级Web框架;MyBatis是一个支持定制化SQL、存储过程以及高级映射的持久层框架。Master在这里表示这是项目的主分支。这表明websocket包可能是一个SSM项目中的模块,用于提供WebSocket通讯支持,允许开发者在一个集成了SSM框架的Java Web应用中使用WebSocket技术。 综上所述,这个websocket包可以提供给开发者一种简洁有效的方式,在遵循Spring框架原则的同时,实现WebSocket通信功能。开发者可以利用此包在Eclipse等IDE中快速开发出支持实时通信的Web应用,极大地提升开发效率和应用性能。
recommend-type

电力电子技术的智能化:数据中心的智能电源管理

# 摘要 本文探讨了智能电源管理在数据中心的重要性,从电力电子技术基础到智能化电源管理系统的实施,再到技术的实践案例分析和未来展望。首先,文章介绍了电力电子技术及数据中心供电架构,并分析了其在能效提升中的应用。随后,深入讨论了智能化电源管理系统的组成、功能、监控技术以及能
recommend-type

通过spark sql读取关系型数据库mysql中的数据

Spark SQL是Apache Spark的一个模块,它允许用户在Scala、Python或SQL上下文中查询结构化数据。如果你想从MySQL关系型数据库中读取数据并处理,你可以按照以下步骤操作: 1. 首先,你需要安装`PyMySQL`库(如果使用的是Python),它是Python与MySQL交互的一个Python驱动程序。在命令行输入 `pip install PyMySQL` 来安装。 2. 在Spark环境中,导入`pyspark.sql`库,并创建一个`SparkSession`,这是Spark SQL的入口点。 ```python from pyspark.sql imp
recommend-type

新版微软inspect工具下载:32位与64位版本

根据给定文件信息,我们可以生成以下知识点: 首先,从标题和描述中,我们可以了解到新版微软inspect.exe与inspect32.exe是两个工具,它们分别对应32位和64位的系统架构。这些工具是微软官方提供的,可以用来下载获取。它们源自Windows 8的开发者工具箱,这是一个集合了多种工具以帮助开发者进行应用程序开发与调试的资源包。由于这两个工具被归类到开发者工具箱,我们可以推断,inspect.exe与inspect32.exe是用于应用程序性能检测、问题诊断和用户界面分析的工具。它们对于开发者而言非常实用,可以在开发和测试阶段对程序进行深入的分析。 接下来,从标签“inspect inspect32 spy++”中,我们可以得知inspect.exe与inspect32.exe很有可能是微软Spy++工具的更新版或者是有类似功能的工具。Spy++是Visual Studio集成开发环境(IDE)的一个组件,专门用于Windows应用程序。它允许开发者观察并调试与Windows图形用户界面(GUI)相关的各种细节,包括窗口、控件以及它们之间的消息传递。使用Spy++,开发者可以查看窗口的句柄和类信息、消息流以及子窗口结构。新版inspect工具可能继承了Spy++的所有功能,并可能增加了新功能或改进,以适应新的开发需求和技术。 最后,由于文件名称列表仅提供了“ed5fa992d2624d94ac0eb42ee46db327”,没有提供具体的文件名或扩展名,我们无法从这个文件名直接推断出具体的文件内容或功能。这串看似随机的字符可能代表了文件的哈希值或是文件存储路径的一部分,但这需要更多的上下文信息来确定。 综上所述,新版的inspect.exe与inspect32.exe是微软提供的开发者工具,与Spy++有类似功能,可以用于程序界面分析、问题诊断等。它们是专门为32位和64位系统架构设计的,方便开发者在开发过程中对应用程序进行深入的调试和优化。同时,使用这些工具可以提高开发效率,确保软件质量。由于这些工具来自Windows 8的开发者工具箱,它们可能在兼容性、效率和用户体验上都经过了优化,能够为Windows应用的开发和调试提供更加专业和便捷的解决方案。
recommend-type

如何运用电力电子技术实现IT设备的能耗监控

# 摘要 随着信息技术的快速发展,IT设备能耗监控已成为提升能效和减少环境影响的关键环节。本文首先概述了电力电子技术与IT设备能耗监控的重要性,随后深入探讨了电力电子技术的基础原理及其在能耗监控中的应用。文章详细分析了IT设备能耗监控的理论框架、实践操作以及创新技术的应用,并通过节能改造案例展示了监控系统构建和实施的成效。最后,本文展望了未来能耗监控技术的发展趋势,同时
recommend-type

2635.656845多位小数数字,js不使用四舍五入保留两位小数,然后把结果千分位,想要的结果是2,635.65;如何处理

在JavaScript中,如果你想要将2635.656845这个数字精确地保留两位小数,并且去掉多余的千分位,可以使用`toFixed()`函数结合字符串切片的方法来实现。不过需要注意的是,`toFixed()`会返回一个字符串,所以我们需要先转换它。 以下是一个示例: ```javascript let num = 2635.656845; // 使用 toFixed() 保留两位小数,然后去掉多余的三位 let roundedNum = num.toFixed(2).substring(0, 5); // 如果最后一个字符是 '0',则进一步判断是否真的只有一位小数 if (round