class RandomDataset(torch.utils.data.Dataset): def __init__(self, data, length): self.data = data self.len = length def __getitem__(self, index): # print("self.data:", self.data.shape) return torch.Tensor(self.data[index, :, :, :]).float() def __len__(self): return self.len trn_loader = torch.utils.data.DataLoader(dataset=RandomDataset(Training_lable, 89600), batch_size=args.batch_size, shuffle=True, **kwopt, drop_last=False) return trn_loader
时间: 2024-02-14 18:06:05 浏览: 219
python torch.utils.data.DataLoader使用方法
5星 · 资源好评率100%
这段代码定义了一个名为 "RandomDataset" 的数据集类,并定义了该类的构造函数、__getitem__ 和 __len__ 方法。构造函数 __init__ 接收两个参数:data 和 length。其中,data 是输入数据,length 是数据集的长度。__getitem__ 方法用于获取指定索引的数据。在该方法中,代码首先从输入数据中获取指定索引的数据,然后将其转换成 torch.Tensor,并将其返回。__len__ 方法返回该数据集的长度。
接下来,代码创建了一个名为 "trn_loader" 的数据加载器,该加载器使用 RandomDataset 类创建数据集,并使用 batch_size、shuffle 和 **kwopt 等参数进行配置。最后,代码返回了该数据加载器。该代码的目的是将训练数据和标签转换成 torch.Tensor,并创建一个 PyTorch 数据加载器,以便进行机器学习模型的训练。
阅读全文