如何在gplearn中设置符号回归的具体参数?
时间: 2024-11-20 21:34:18 浏览: 14
Python基于符号回归(遗传算法)的特征生成原理及代码
5星 · 资源好评率100%
在gplearn(Python库用于基于遗传程序设计的机器学习)中,设置符号回归的参数主要涉及以下几个方面:
1. **`gp.PrimitiveSet`**:定义操作符集和变量集,比如`Real`、`Integer`。例如:
```python
primitives = gp.PrimitiveSet("ps", n_features) # n_features是输入特征的数量
```
2. **`Individual`** 和 **`Population`**:控制个体和种群大小,以及迭代次数:
```python
toolbox = base.Toolbox()
toolbox.register("expr", gp.genHalfAndHalf, pset=primitives)
toolbox.register("individual", tools.initIterate, creator.Individual, toolbox.expr)
toolbox.register("population", tools.initRepeat, list, toolbox.individual)
pop_size = 500 # 种群大小
max_gen = 50 # 迭代次数
```
3. **`FitnessFunction`**:选择适应度函数,一般用均方误差(MSE)作为目标函数:
```python
toolbox.register("evaluate", fitness.mse, target=y_train) # y_train是训练标签
```
4. **`evolve()`** 函数中的其他参数,比如交叉概率 (`cxpb`)、变异概率 (`mutpb`)、选择策略 (`selection`) 等,可以调整遗传算法的行为:
```python
pop = toolbox.population(n=pop_size)
hof = tools.HallOfFame(1) # 保存最佳个体
stats_fit = tools.Statistics(key=lambda ind: ind.fitness.values)
stats_size = tools.Statistics(len)
logbook = tools.Logbook()
logbook.header = ['gen', 'evals'] + stats_size标题 + stats_fit标题
for gen in range(max_gen):
offspring = toolbox.select(pop, len(pop))
offspring = algorithms.varAnd(offspring, toolbox, cxpb=cxpb, mutpb=mutpb)
fits = toolbox.map(toolbox.evaluate, offspring)
for fit, ind in zip(fits, offspring):
ind.fitness.values = fit
pop[:] = offspring
logbook.record(gen=gen, evals=len(fits), **stats_size.compile(pop), **stats_fit.compile(pop))
if hof.update(pop, k=1): # 更新Hall of Fame
print("Generation %i: Best individual is %s" % (gen, hof[0]))
best_ind = hof[0] # 返回最佳个体的符号表达式
```
阅读全文