graph = nx.DiGraph() graph.add_nodes_from(example.dominoModules[i].nodes()) graph.add_edges_from(example.dominoModules[i].edges()) pos = nx.spring_layout(graph) plt.title(f'Bayesian Network Based On {example.dominoModules[i].get_roots()[0]}') nx.draw(graph, pos, with_labels=True, node_color='lightblue', node_size=2000, edge_color='gray', arrows=True) plt.show()这样绘制的贝叶斯网络图形很乱怎么调整

时间: 2024-04-17 14:27:40 浏览: 22
如果使用`nx.spring_layout()`布局绘制的贝叶斯网络图形很乱,可以尝试使用其他布局算法或进行一些调整来改善图形的可读性。下面是一些可能的解决方法: 1. 更换布局算法:`networkx`库提供了多种布局算法可供选择。除了`spring_layout`,还可以尝试使用其他布局算法,如`circular_layout`、`shell_layout`、`kamada_kawai_layout`等。不同的布局算法适用于不同类型的图形,您可以尝试多种算法以找到适合您的贝叶斯网络的最佳布局。 2. 调整节点位置:使用`pos`参数手动调整节点的位置,可以将节点移动到更合适的位置。您可以通过修改`pos`字典中节点的坐标来实现。尝试手动调整根节点和一级节点的位置,以使它们更接近您想要的布局效果。 3. 缩小节点尺寸:节点的尺寸可能会影响整体图形的可读性。尝试减小节点的大小,以便更多节点能够在有限的绘图空间内展示。 4. 调整边的样式:通过调整边的样式,如颜色、线型、箭头等,可以使图形更易于理解。您可以使用`edge_color`、`linewidths`、`arrows`等参数来调整边的样式。 5. 分层绘制:如果贝叶斯网络具有明显的层次结构,您可以尝试按层次绘制节点,以使图形更有结构感。可以使用`networkx`库中的`bipartite_layout`或`multipartite_layout`函数来实现分层绘制。 通过尝试上述方法,您应该能够改善贝叶斯网络图形的可读性。根据贝叶斯网络的特点和数据集的复杂性,可能需要多次调整布局和样式才能达到最佳效果。
相关问题

graph = nx.DiGraph() graph.add_nodes_from(example.dominoModules[i].nodes()) graph.add_edges_from(example.dominoModules[i].edges()) pos = nx.spring_layout(graph) plt.title(f'Bayesian Network Based On {example.dominoModules[i].get_roots()[0]}') nx.draw(graph, pos, with_labels=True, node_color='lightblue', node_size=2000, edge_color='gray', arrows=True) plt.show()改成使用multipartite_layout绘制

要使用`nx.multipartite_layout()`绘制贝叶斯网络图,您需要为每个节点指定层次。由于您没有提供具体的节点层次信息,我将提供一个示例代码,其中假设根节点在最上面,一级节点在根节点的下面,以此类推。请注意,您需要根据实际情况调整节点的层次和样式。 ```python import matplotlib.pyplot as plt import networkx as nx from pgmpy.readwrite import XMLBIFReader # 从XML文件中读取贝叶斯网络 reader = XMLBIFReader("network.xml") model = reader.get_model() # 创建一个空的有向图 G = nx.DiGraph() # 添加节点和层次信息 nodes = model.nodes() levels = {} for node in nodes: level = model.get_independencies(node).level() levels[node] = level G.add_node(node, level=level) # 添加边 G.add_edges_from(model.edges()) # 设置布局 pos = nx.multipartite_layout(G, subset_key="level", align="vertical") # 绘制图形 nx.draw(G, pos, with_labels=True, node_size=1000, node_color="lightblue", font_size=10) # 显示图形 plt.axis("off") plt.show() ``` 在这个示例中,我们首先从XML文件中读取贝叶斯网络模型,并创建一个空的有向图。然后,我们为每个节点添加层次信息,并将其作为节点属性存储在图中。接下来,我们添加边,然后使用`nx.multipartite_layout()`函数根据节点的层次信息设置节点的布局,使得根节点在最上面,一级节点在根节点的下面,以此类推。最后,使用`nx.draw()`函数绘制图形,并使用`plt.axis("off")`和`plt.show()`函数显示图形。 请注意,您需要将上述代码中的`"network.xml"`替换为您自己的贝叶斯网络模型的文件名或路径。此外,您可能需要根据实际情况调整节点大小、颜色、字体大小等参数以满足您的需求。

class Graph: graph = nx.DiGraph() def __init__(self): self.graph = nx.DiGraph() def createGraph(self, filename): file = open(filename, 'r') for line in file.readlines(): nodes = line.split() edge = (int(nodes[0]), int(nodes[1])) self.graph.add_edge(*edge) return self.graph 什么意思

这段代码定义了一个Graph类,用于创建和操作DiGraph对象(有向图)。类的初始化方法__init__中创建了一个空的DiGraph对象。类还有一个createGraph方法,用于从文件中读取图的边信息并创建DiGraph对象。方法接收一个文件名作为输入,并返回创建的DiGraph对象。具体实现中,方法打开文件并逐行读取,将每行的两个节点转换为整数,并将它们作为有向边添加到DiGraph对象中。最后,方法返回创建的DiGraph对象。

相关推荐

import pandas as pd import numpy as np import networkx as nx import matplotlib.pyplot as plt # 读取Excel文件中的邻接矩阵 adjacency_matrix = pd.read_excel('output.xlsx', index_col=0) # 将邻接矩阵转换为numpy数组 adjacency_matrix = adjacency_matrix.to_numpy() # 创建有向图对象 G = nx.DiGraph(adjacency_matrix) def preprocess(G): p = 0 directedGraph = nx.DiGraph() for u in G.nodes(): for v in G.neighbors(u): if (v != u): propProb = G.number_of_edges(u, v) / G.degree(v) directedGraph.add_edge(u, v, pp=propProb) return directedGraph def simulate(G, seedNode, propProbability): newActive = True currentActiveNodes = seedNode.copy() newActiveNodes = set() activatedNodes = seedNode.copy() influenceSpread = len(seedNode) while newActive: for node in currentActiveNodes: for neighbor in G.neighbors(node): if neighbor not in activatedNodes: if G[node][neighbor]['pp'] > propProbability: newActiveNodes.add(neighbor) activatedNodes.append(neighbor) influenceSpread += len(newActiveNodes) if newActiveNodes: currentActiveNodes = list(newActiveNodes) newActiveNodes = set() else: newActive = False return influenceSpread def flipCoin(probability): return np.random.random() < probability # 可视化传播过程 def visualizePropagation(G, seedNode, propProbability): pos = nx.spring_layout(G) # 选择布局算法 labels = {node: node for node in G.nodes()} # 节点标签为节点名 colors = ['r' if node in seedNode else 'b' for node in G.nodes()] # 种子节点为红色,其他节点为蓝色 plt.figure(figsize=(10,6)) nx.draw_networkx_nodes(G, pos, node_color=colors) nx.draw_networkx_edges(G, pos) nx.draw_networkx_labels(G, pos, labels) plt.title('Propagation Visualization') plt.show() # 示例用法 seedNode = [7,36,17] propProbability = 0.7 directedGraph = preprocess(G) influenceSpread = simulate(directedGraph, seedNode, propProbability) print("Influence Spread:", influenceSpread) visualizePropagation(directedGraph, seedNode, propProbability)修改这个代码使得输出图形节点之间间隔合理能够看清

import pandas as pd import numpy as np import networkx as nx # 读取Excel文件中的邻接矩阵 adjacency_matrix = pd.read_excel('output.xlsx', index_col=0) # 将邻接矩阵转换为numpy数组 adjacency_matrix = adjacency_matrix.to_numpy() # 创建有向图对象 G = nx.DiGraph(adjacency_matrix) def preprocess(G): p = 0 directedGraph = nx.DiGraph() for u in G.nodes(): for v in G.neighbors(u): if (v != u): # propProb = G.number_of_edges(u, v) / G.in_degree(v) propProb = G.number_of_edges(u, v) / G.degree(v) directedGraph.add_edge(u, v, pp=propProb) # p += propProb # print(propProb) # print('平均阈值:', p/2939) return directedGraph def simulate(G, seedNode, propProbability): newActive = True currentActiveNodes = copy.deepcopy(seedNode) newActiveNodes = set() activatedNodes = copy.deepcopy(seedNode) # Biar ga keaktivasi 2 kali influenceSpread = len(seedNode) while (newActive): for node in currentActiveNodes: for neighbor in G.neighbors( node): # Harus dicek udah aktif apa belom, jangan sampe ngaktifin yang udah aktif if (neighbor not in activatedNodes): if (G[node][neighbor]['pp'] > propProbability): # flipCoin(propProbability) newActiveNodes.add(neighbor) activatedNodes.append(neighbor) influenceSpread += len(newActiveNodes) if newActiveNodes: currentActiveNodes = list(newActiveNodes) newActiveNodes = set() else: newActive = False # print("activatedNodes",len(activatedNodes),activatedNodes) return influenceSpread def flipCoin(probability): return random.random() < probability解释一下这个代码

import networkx as nx import matplotlib.pyplot as plt # 输入数据 locations = [[125.330802,125.401931,125.326444,125.332284,125.322837,125.32563,125.334942,125.378548,125.386251,125.426883,125.42665,125.437111,125.453763,125.431396,125.430705,125.41968,125.437906,125.404171,125.385772,125.341942,125.341535,125.300812,125.307316,125.345642,125.331492,125.330322,125.284474,125.334851,125.30606,125.377211,125.381077,125.417041,125.41427,125.416371,125.432283,125.401676,125.403855,125.38582,125.426733,125.291], [43.917542,43.919075,43.905821,43.90266,43.900238,43.89703,43.888187,43.904508,43.892574,43.907904,43.896354,43.894605,43.889122,43.88774,43.882928,43.887149,43.8789,43.879647,43.883112,43.873763,43.861505,43.854652,43.876513,43.850479,43.833745,43.825044,43.812019,43.803154,43.793054,43.788869,43.824152,43.816805,43.801673,43.82893,43.83235,43.843713,43.854322,43.868372,43.871792,43.8306]] num_flights = 4 flight_capacity = [10, 10, 10, 10] # 将坐标转化为图 G = nx.Graph() for i in range(len(locations[0])): G.add_node(i+1, pos=(locations[0][i], locations[1][i])) for i in range(len(locations[0])): for j in range(i+1, len(locations[0])): dist = ((locations[0][i]-locations[0][j])**2 + (locations[1][i]-locations[1][j])**2)**0.5 G.add_edge(i+1, j+1, weight=dist) # 添加起点和终点 start_node = len(locations[0])+1 end_node = len(locations[0])+2 G.add_node(start_node, pos=(0, 0)) G.add_node(end_node, pos=(0, 0)) # 添加边和边权 for i in range(len(locations[0])): G.add_edge(start_node, i+1, weight=0) G.add_edge(i+1, end_node, weight=0) for f in range(num_flights): for i in range(len(locations[0])): G.add_edge(i+1, len(locations[0])+f*len(locations[0])+i+1, weight=0) G.add_edge(len(locations[0])+f*len(locations[0])+i+1, end_node, weight=0) # 添加航班容量的限制 for f in range(num_flights): for i in range(len(locations[0])): G.add_edge(len(locations[0])+f*len(locations[0])+i+1, len(locations[0])+f*len(locations[0])+len(locations[0])+1, weight=-flight_capacity[f]) #创造路径规划模型 path_model = nx.DiGraph() for i in range(len(locations[0])): for f in range(num_flights): for j in range(len(locations[0])): if i != j: path_model.add_edge(len(locations[0])+flen(locations[0])+i+1, len(locations[0])+flen(locations[0])+j+1, weight=G[i+1][j+1]['weight']+G[len(locations[0])+flen(locations[0])+i+1][len(locations[0])+f*len(locations[0])+j+1]['weight']) 添加航班时间的限制 for f in range(num_flights): for i in range(len(locations[0])): for j in range(len(locations[0])): if i != j: path_model.add_edge(len(locations[0])+f*len(locations[0])+i+1, len(locations[0])+((f+1)%num_flights)*len(locations[0])+j+1, weight=G[i+1][j+1]['weight']) 求解最短路径 path = nx.bellman_ford_path(path_model, source=start_node, target=end_node, weight='weight') 绘制路径图 pos = nx.get_node_attributes(G, 'pos') nx.draw_networkx_nodes(G, pos, node_size=50, node_color='w') nx.draw_networkx_labels(G, pos) nx.draw_networkx_edges(G, pos, edgelist=G.edges(), width=0.5) for f in range(num_flights): start = len(locations[0])+f*len(locations[0])+1 end = len(locations[0])+(f+1)*len(locations[0])+1 nx.draw_networkx_edges(G, pos, edgelist=path[start:end], edge_color='r', width=2.0, alpha=0.7) plt.axis('off') plt.show()找出错误并修改

import networkx as nx import matplotlib.pyplot as plt # 输入数据 locations = [ [125.330802,125.401931,125.326444,125.332284,125.322837,125.32563,125.334942,125.378548,125.386251,125.426883,125.42665,125.437111,125.453763,125.431396,125.430705,125.41968,125.437906,125.404171,125.385772,125.341942,125.341535,125.300812,125.307316,125.345642,125.331492,125.330322,125.284474,125.334851,125.30606,125.377211,125.381077,125.417041,125.41427,125.416371,125.432283,125.401676,125.403855,125.38582,125.426733,125.291], [43.917542,43.919075,43.905821,43.90266,43.900238,43.89703,43.888187,43.904508,43.892574,43.907904,43.896354,43.894605,43.889122,43.88774,43.882928,43.887149,43.8789,43.879647,43.883112,43.873763,43.861505,43.854652,43.876513,43.850479,43.833745,43.825044,43.812019,43.803154,43.793054,43.788869,43.824152,43.816805,43.801673,43.82893,43.83235,43.843713,43.854322,43.868372,43.871792,43.8306] ] num_flights = 4 flight_capacity = [10, 10, 10, 10] # 将坐标转化为图 G = nx.Graph() for i in range(len(locations[0])): G.add_node(i+1, pos=(locations[0][i], locations[1][i])) for i in range(len(locations[0])): for j in range(i+1, len(locations[0])): dist = ((locations[0][i]-locations[0][j])**2 + (locations[1][i]-locations[1][j])**2)**0.5 G.add_edge(i+1, j+1, weight=dist) # 添加起点和终点 start_node = len(locations[0])+1 end_node = len(locations[0])+2 G.add_node(start_node, pos=(0, 0)) G.add_node(end_node, pos=(0, 0)) # 添加边和边权 for i in range(len(locations[0])): G.add_edge(start_node, i+1, weight=0) G.add_edge(i+1, end_node, weight=0) for f in range(num_flights): for i in range(len(locations[0])): G.add_edge(i+1, len(locations[0])+flen(locations[0])+i+1, weight=0) G.add_edge(len(locations[0])+flen(locations[0])+i+1, end_node, weight=0) # 添加航班容量的限制 for f in range(num_flights): for i in range(len(locations[0])): G.add_edge(len(locations[0])+flen(locations[0])+i+1, len(locations[0])+flen(locations[0])+len(locations[0])+1, weight=-flight_capacity[f]) # 创造路径规划模型 path_model = nx.DiGraph() for i in range(len(locations[0])): for f in range(num_flights): for j in range(len(locations[0])): if i != j: path_model.add_edge(len(locations[0])+flen(locations[0])+i+1, len(locations[0])+flen(locations[0])+j+1, weight=G[i+1][j+1]['weight']+G[len(locations[0])+flen(locations[0])+i+1][len(locations[0])+flen(locations[0])+j+1]['weight']) # 添加航班时间的限制 for f in range(num_flights): for i in range(len(locations[0])): for j in range(len(locations[0])): if i != j: path_model.add_edge(len(locations[0])+f*len(locations[0])+i+1, len(locations[0])+((f+1)%num_flights)len(locations[0])+j+1, weight=G[i+1][j+1]['weight']) # 求解最短路径 path = nx.bellman_ford_path(path_model, source=start_node, target=end_node, weight='weight') # 绘制路径图 pos = nx.get_node_attributes(G, 'pos') nx.draw_networkx_nodes(G, pos, node_size=50, node_color='w') nx.draw_networkx_labels(G, pos) nx.draw_networkx_edges(G, pos, edgelist=G.edges(), width=0.5) for f in range(num_flights): start = len(locations[0])+flen(locations[0])+1 end = len(locations[0])+(f+1)*len(locations[0])+1 nx.draw_networkx_edges(G, pos, edgelist=path[start:end], edge_color='r', width=2.0, alpha=0.7) plt.axis('off') plt.show()找出错误并改正

最新推荐

recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

MATLAB柱状图在信号处理中的应用:可视化信号特征和频谱分析

![matlab画柱状图](https://img-blog.csdnimg.cn/3f32348f1c9c4481a6f5931993732f97.png) # 1. MATLAB柱状图概述** MATLAB柱状图是一种图形化工具,用于可视化数据中不同类别或组的分布情况。它通过绘制垂直条形来表示每个类别或组中的数据值。柱状图在信号处理中广泛用于可视化信号特征和进行频谱分析。 柱状图的优点在于其简单易懂,能够直观地展示数据分布。在信号处理中,柱状图可以帮助工程师识别信号中的模式、趋势和异常情况,从而为信号分析和处理提供有价值的见解。 # 2. 柱状图在信号处理中的应用 柱状图在信号处理
recommend-type

用Spring boot和vue写一个登录注册界面

好的,这是一个比较常见的技术问题,我可以为您提供一些参考资料和思路。首先,您可以使用Spring Boot作为后端框架来处理用户认证和注册的逻辑,比如使用Spring Security实现用户登录认证。同时,您还需要设计相应的数据模型和数据库表结构来存储用户信息。在前端方面,您可以使用Vue.js作为框架来构建登录注册页面,使用Axios来发起API请求并和后端进行交互。当然,在实现过程中,还需要考虑一些具体细节,比如数据校验、安全性和用户体验等方面。希望这些信息能够帮助到您。
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

MATLAB柱状图在数据分析中的作用:从可视化到洞察

![MATLAB柱状图在数据分析中的作用:从可视化到洞察](https://img-blog.csdnimg.cn/img_convert/1a36558cefc0339f7836cca7680c0aef.png) # 1. MATLAB柱状图概述** 柱状图是一种广泛用于数据可视化的图表类型,它使用垂直条形来表示数据中不同类别或组别的值。在MATLAB中,柱状图通过`bar`函数创建,该函数接受数据向量或矩阵作为输入,并生成相应的高度条形。 柱状图的优点在于其简单性和易于理解性。它们可以快速有效地传达数据分布和组别之间的比较。此外,MATLAB提供了广泛的定制选项,允许用户调整条形颜色、
recommend-type

命名ACL和拓展ACL标准ACL的具体区别

命名ACL和标准ACL的主要区别在于匹配条件和作用范围。命名ACL可以基于协议、端口和其他条件进行匹配,并可以应用到接口、VLAN和其他范围。而标准ACL只能基于源地址进行匹配,并只能应用到接口。拓展ACL则可以基于源地址、目的地址、协议、端口和其他条件进行匹配,并可以应用到接口、VLAN和其他范围。
recommend-type

c++校园超市商品信息管理系统课程设计说明书(含源代码) (2).pdf

校园超市商品信息管理系统课程设计旨在帮助学生深入理解程序设计的基础知识,同时锻炼他们的实际操作能力。通过设计和实现一个校园超市商品信息管理系统,学生掌握了如何利用计算机科学与技术知识解决实际问题的能力。在课程设计过程中,学生需要对超市商品和销售员的关系进行有效管理,使系统功能更全面、实用,从而提高用户体验和便利性。 学生在课程设计过程中展现了积极的学习态度和纪律,没有缺勤情况,演示过程流畅且作品具有很强的使用价值。设计报告完整详细,展现了对问题的深入思考和解决能力。在答辩环节中,学生能够自信地回答问题,展示出扎实的专业知识和逻辑思维能力。教师对学生的表现予以肯定,认为学生在课程设计中表现出色,值得称赞。 整个课程设计过程包括平时成绩、报告成绩和演示与答辩成绩三个部分,其中平时表现占比20%,报告成绩占比40%,演示与答辩成绩占比40%。通过这三个部分的综合评定,最终为学生总成绩提供参考。总评分以百分制计算,全面评估学生在课程设计中的各项表现,最终为学生提供综合评价和反馈意见。 通过校园超市商品信息管理系统课程设计,学生不仅提升了对程序设计基础知识的理解与应用能力,同时也增强了团队协作和沟通能力。这一过程旨在培养学生综合运用技术解决问题的能力,为其未来的专业发展打下坚实基础。学生在进行校园超市商品信息管理系统课程设计过程中,不仅获得了理论知识的提升,同时也锻炼了实践能力和创新思维,为其未来的职业发展奠定了坚实基础。 校园超市商品信息管理系统课程设计的目的在于促进学生对程序设计基础知识的深入理解与掌握,同时培养学生解决实际问题的能力。通过对系统功能和用户需求的全面考量,学生设计了一个实用、高效的校园超市商品信息管理系统,为用户提供了更便捷、更高效的管理和使用体验。 综上所述,校园超市商品信息管理系统课程设计是一项旨在提升学生综合能力和实践技能的重要教学活动。通过此次设计,学生不仅深化了对程序设计基础知识的理解,还培养了解决实际问题的能力和团队合作精神。这一过程将为学生未来的专业发展提供坚实基础,使其在实际工作中能够胜任更多挑战。
recommend-type

关系数据表示学习

关系数据卢多维奇·多斯桑托斯引用此版本:卢多维奇·多斯桑托斯。关系数据的表示学习机器学习[cs.LG]。皮埃尔和玛丽·居里大学-巴黎第六大学,2017年。英语。NNT:2017PA066480。电话:01803188HAL ID:电话:01803188https://theses.hal.science/tel-01803188提交日期:2018年HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaireUNIVERSITY PIERRE和 MARIE CURIE计算机科学、电信和电子学博士学院(巴黎)巴黎6号计算机科学实验室D八角形T HESIS关系数据表示学习作者:Ludovic DOS SAntos主管:Patrick GALLINARI联合主管:本杰明·P·伊沃瓦斯基为满足计算机科学博士学位的要求而提交的论文评审团成员:先生蒂埃里·A·退休记者先生尤尼斯·B·恩