以测试集AUC为评价指标,使用深度学习进行二分类任务预测的代码
时间: 2024-02-06 07:02:09 浏览: 67
以下是使用深度学习进行二分类任务预测的代码,以测试集AUC为评价指标:
```python
import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import DataLoader, TensorDataset
from sklearn.metrics import roc_auc_score
# 定义神经网络模型
class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
self.fc1 = nn.Linear(10, 64)
self.fc2 = nn.Linear(64, 32)
self.fc3 = nn.Linear(32, 1)
self.sigmoid = nn.Sigmoid()
def forward(self, x):
x = self.fc1(x)
x = nn.functional.relu(x)
x = self.fc2(x)
x = nn.functional.relu(x)
x = self.fc3(x)
x = self.sigmoid(x)
return x
# 加载数据集
data = torch.load('data.pt')
x_train, y_train, x_test, y_test = data
train_dataset = TensorDataset(x_train, y_train)
train_loader = DataLoader(train_dataset, batch_size=32, shuffle=True)
test_dataset = TensorDataset(x_test, y_test)
test_loader = DataLoader(test_dataset, batch_size=32, shuffle=False)
# 定义损失函数和优化器
criterion = nn.BCELoss()
net = Net()
optimizer = optim.Adam(net.parameters(), lr=0.01)
# 训练模型
for epoch in range(10):
running_loss = 0.0
for i, data in enumerate(train_loader):
inputs, labels = data
optimizer.zero_grad()
outputs = net(inputs)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
running_loss += loss.item()
# 在测试集上计算AUC
y_pred = []
y_true = []
with torch.no_grad():
for data in test_loader:
inputs, labels = data
outputs = net(inputs)
y_pred += outputs.tolist()
y_true += labels.tolist()
auc = roc_auc_score(y_true, y_pred)
print('Epoch %d, loss: %.3f, test AUC: %.3f' % (epoch + 1, running_loss / len(train_loader), auc))
```
在这段代码中,我们使用了 PyTorch 框架来构建神经网络模型,使用 Adam 优化器来更新模型参数,使用二分类交叉熵损失函数来评估模型性能。在每个 epoch 结束后,我们在测试集上计算 AUC 来评价模型的性能。
阅读全文