用任意语言实现函数permutation(n, m)。要求: a. 对于整数m,当0<m<=n!,返回一个1至n的排列 b. 对于同一n,不同的m,返回不同的排列 c. 空间复杂度和时间复杂度均不超过O(n)
时间: 2024-03-24 11:36:28 浏览: 54
permutation.docx
以下是 Python 语言实现的函数 `permutation(n, m)`:
```
def permutation(n, m):
nums = list(range(1, n+1))
res = []
factorial = 1
for i in range(1, n+1):
factorial *= i
m -= 1
while n > 0:
factorial //= n
index = m // factorial
res.append(nums.pop(index))
m %= factorial
n -= 1
return res
```
该函数的实现思路是利用阶乘的性质,将 m 转换为 n 个数字的排列中第几个排列,然后通过不断地计算余数和商来得到每个位置对应的数字。
具体地,我们设要求的排列为 $p_1, p_2, ..., p_n$,则第 $i$ 个位置可以选择的数字为 $1,2,...,n$ 中没有被选过的数字中第 $i$ 大的数字,设第 $i$ 个位置选的数字为 $x_i$,则可以得到如下的式子:
$$m = (x_1 - 1) \times (n-1)! + (x_2 - 1) \times (n-2)! + ... + (x_n - 1) \times 0!$$
上述式子中每一项都是该位置选择的数字对总方案数的贡献,因为前面的位置已经选定了对应的数字,所以剩下的数字中第 $i$ 大的数字的排名为 $x_i$。
我们可以通过不断地计算 $m$ 对 $(n-1)!$ 的商和余数来得到每个位置选的数字。具体地,我们从 $n$ 到 $1$ 遍历每个位置,每次计算出当前位置选的数字在剩下的数字中的排名,然后将该数字从剩下的数字中删除。最后返回得到的排列即可。
该算法的时间复杂度为 $O(n)$,空间复杂度也为 $O(n)$。
阅读全文