def residual_network(inputs, dropout_rate=0.1): # 第一层卷积层 x = Conv1D(64, 3, padding="same")(inputs) x = BatchNormalization()(x) x = Activation("relu")(x) # 第二层卷积层 x = Conv1D(64, 3, padding="same")(x) x = BatchNormalization()(x) x = Activation("relu")(x) # 残差块 for i in range(5): y = Conv1D(64, 3, padding="same")(x) y = BatchNormalization()(y) y = Activation("relu")(y) y = Conv1D(64, 3, padding="same")(y) y = BatchNormalization()(y) y = Add()([x, y]) x = Activation("relu")(y) x = Dropout(dropout_rate)(x) # 全局池化层和全连接层 x = Flatten()(x) x = Dense(128, activation="relu")(x) x = Dropout(dropout_rate)(x) x = Dense(3, activation="linear")(x) outputs = x return outputs # 构建模型 inputs = Input(shape=input_shape) outputs = residual_network(inputs) model = Model(inputs=inputs, outputs=outputs) # 编译模型 model.compile(loss="mean_squared_error", optimizer=Adam()) # 定义EarlyStopping回调函数 early_stopping = EarlyStopping(monitor='val_loss', patience=10, verbose=1, mode='min') # 训练模型 history = model.fit(data[..., np.newaxis], data, epochs=100, validation_split=0.2, callbacks=[early_stopping])画出流程图
时间: 2023-11-22 18:05:31 浏览: 57
好的,让我尝试为您画出这段代码的流程图。请注意,由于代码较长,我将仅展示其主要流程,具体实现细节可能需要您根据代码自行揣摩。
[输入] -> [第一层卷积层] -> [批量归一化] -> [ReLU激活函数] -> [第二层卷积层] -> [批量归一化] -> [ReLU激活函数] -> [残差块] -> [残差块] -> [残差块] -> [残差块] -> [残差块] -> [全局池化层] -> [全连接层] -> [ReLU激活函数] -> [Dropout层] -> [全连接层] -> [线性激活函数] -> [输出]
其中,[残差块]的结构如下:
[输入] -> [卷积层] -> [批量归一化] -> [ReLU激活函数] -> [卷积层] -> [批量归一化] -> [Add层] -> [ReLU激活函数] -> [Dropout层] -> [输出]
希望这个流程图对您有所帮助。
相关问题
解释一下这段代码import pdb import tensorflow as tf from matplotlib import pyplot as plt import numpy as np import os from tensorflow.keras import Model from tensorflow.keras.layers import Conv2D,BatchNormalization,Activation,MaxPool2D,Dense,Dropout,Flatten,GlobalAveragePooling2D np.set_printoptions(threshold=np.inf) class ResnetBlock(Model): def __init__(self, filters, strides=1,residual_path=False): super(ResnetBlock, self).__init__() self.filters = filters self.strides = strides self.residual_path = residual_path self.c1 = Conv2D(filters, (3, 3), strides=strides, padding='same', use_bias=False) self.b1 = BatchNormalization() self.a1 = Activation('relu') self.c2 = Conv2D(filters, (3, 3), strides=1, padding='same', use_bias=False) self.b2 = BatchNormalization() if residual_path: self.down_c1 = Conv2D(filters, (1, 1),strides=strides, padding='same', use_bias=False) self.down_b1 = BatchNormalization() self.a2 = Activation('relu') def call(self, inputs): residual = inputs x = self.c1(inputs) x = self.b1(x) x = self.a1(x) x = self.c2(x) y = self.b2(x) if self.residual_path: residual = self.down_c1(inputs) residual = self.down_b1(residual) out = self.a2(y + residual) return out class ResNet18(Model): def __init__(self, block_list, initial_filters=64): super(ResNet18, self).__init__() self.num_blocks = len(block_list) self.block_list = block_list self.out_filters = initial_filters self.c1 = Conv2D(self.out_filters, (3, 3), strides=1, padding='same', use_bias=False, kernel_initializer='he_normal') self.b1 = BatchNormalization() self.a1 = Activation('relu') self.blocks = tf.keras.models.Sequential() for block_id in range(len(block_list)): for layer_id in range(block_list[block_id]): if block_id != 0 and layer_id == 0: block = ResnetBlock(self.out_filters, strides=2, residual_path=True) else: block = ResnetBlock(self.out_filters, residual_path=False) self.blocks.add(block) self.out_filters *= 2 self.p1 = tf.keras.layers.GlobalAveragePooling2D() self.f1 = tf.keras.layers.Dense(41, activation='tanh') def call(self, inputs): x = self.c1(inputs) x = self.b1(x) x = self.a1(x) x = self.blocks(x) x = self.p1(x) y = self.f1(x) return y
这段代码实现了一个ResNet18的模型。ResNet是深度学习中非常著名的神经网络模型之一,它的主要贡献在于解决了深度神经网络中的梯度消失问题,使得神经网络可以更深更复杂。ResNet18是ResNet的一个较小规模的版本,包含了18个卷积层和全连接层。这个模型的输入是一张图片,输出是一个41维的向量,用于表示图片属于41个不同类别中的哪一个。
在代码中,首先定义了一个ResnetBlock类,用于组成ResNet18中的基本模块。每个ResnetBlock包含两个卷积层和一个残差连接,其中第一个卷积层的输出经过BatchNormalization和ReLU激活函数后作为第二个卷积层的输入,第二个卷积层的输出经过BatchNormalization后和残差连接相加后再经过ReLU激活函数。如果需要进行降采样,则在残差连接中添加一个卷积层。
接着定义了一个ResNet18类,它包含了一个初始的卷积层、一系列ResnetBlock和全局平均池化层、一个全连接层。在ResNet18的构建过程中,根据传入的block_list参数的不同,逐步增加ResnetBlock的数量和输出通道数。在每个ResnetBlock中,如果需要进行降采样,则会在第一个卷积层中设置strides=2,否则为1。最后,经过全局平均池化层和全连接层,输出最终的预测结果。
在调用模型时,首先将输入图片经过初始的卷积层、BatchNormalization和ReLU激活函数,再经过一系列ResnetBlock,最后进行全局平均池化和全连接层的计算,得到预测结果。
怎么使用TCN构建一种残差块,这种残差块按照以下顺序排列:膨胀因果卷积层、正则化层、激活函数层、dropout层、膨胀因果卷积层、正则化层、激活函数层、dropout层,另外还具有一个作为恒等映射的从输入到输出的卷积核大小是1*1的卷积层。请给出其代码及注释
以下是使用TCN构建残差块的示例代码,其中按照指定顺序排列膨胀因果卷积层、正则化层、激活函数层、dropout层,并包含一个恒等映射的1x1卷积层:
```python
import tensorflow as tf
from tensorflow.keras.layers import Conv1D, Activation, LayerNormalization, Dropout, Add
def residual_block(inputs, filters, kernel_size, dilation_rate, use_batch_norm=True, dropout_rate=0.0):
# 膨胀因果卷积层
conv1 = Conv1D(filters=filters, kernel_size=kernel_size, padding='causal', dilation_rate=dilation_rate)(inputs)
# 正则化层
if use_batch_norm:
conv1 = LayerNormalization()(conv1)
# 激活函数层
conv1 = Activation('relu')(conv1)
# Dropout层
if dropout_rate > 0.0:
conv1 = Dropout(rate=dropout_rate)(conv1)
# 膨胀因果卷积层
conv2 = Conv1D(filters=filters, kernel_size=kernel_size, padding='causal', dilation_rate=dilation_rate)(conv1)
# 正则化层
if use_batch_norm:
conv2 = LayerNormalization()(conv2)
# 激活函数层
conv2 = Activation('relu')(conv2)
# Dropout层
if dropout_rate > 0.0:
conv2 = Dropout(rate=dropout_rate)(conv2)
# 残差连接
residual = Add()([inputs, conv2])
return residual
# 输入层
inputs = tf.keras.Input(shape=(input_length, input_dim))
# 残差块
residual = residual_block(inputs, filters=64, kernel_size=3, dilation_rate=1, use_batch_norm=True, dropout_rate=0.1)
# 恒等映射的1x1卷积层
identity_mapping = Conv1D(filters=64, kernel_size=1)(inputs)
# 输出层
outputs = Add()([residual, identity_mapping])
# 创建模型
model = tf.keras.Model(inputs=inputs, outputs=outputs)
```
在上述代码中,`residual_block`函数定义了一个残差块。它接受输入张量,然后按照指定顺序依次应用膨胀因果卷积层、正则化层、激活函数层和dropout层。在每个膨胀因果卷积层后面,都有相应的正则化层、激活函数层和dropout层。最后,使用Add()函数将输入张量与最后一个膨胀因果卷积层的输出进行相加,实现了残差连接。
在主代码中,首先定义了输入层,然后通过调用`residual_block`函数创建了一个残差块。接下来,使用一个恒等映射的1x1卷积层来创建一个与输入维度相同的恒等映射。最后,使用Add()函数将残差块的输出和恒等映射的输出相加,得到最终的输出。通过tf.keras.Model类,将输入和输出定义为模型的输入和输出,并创建了TCN模型。
阅读全文