TCN代码keras版本,加入残差网络,和卷积层深度
时间: 2024-03-23 17:42:58 浏览: 136
以下是一个带有残差网络和可配置卷积层深度的TCN代码示例:
```python
from keras.layers import Input, Dense, Dropout, Add
from keras.layers import Conv1D, GlobalMaxPooling1D
from keras.models import Model
def tcn_resnet(input_shape, num_classes, num_layers=8):
# Input layer
inputs = Input(shape=input_shape)
# Convolutional layers
x = inputs
skips = []
for i in range(num_layers):
d = 2 ** i
# Dilated convolution
res = Conv1D(filters=64, kernel_size=3, strides=1, dilation_rate=d, padding='causal', activation='relu')(x)
res = Dropout(0.5)(res)
# Residual connection
if i > 0:
x = Add()([x, res])
else:
x = res
skips.append(res)
# Global Max Pooling layer
x = GlobalMaxPooling1D()(x)
# Fully connected layers
for i in range(2):
x = Dense(64, activation='relu')(x)
x = Dropout(0.5)(x)
outputs = Dense(num_classes, activation='softmax')(x)
# Create model
model = Model(inputs=inputs, outputs=outputs)
return model
```
这个TCN模型包含了一个残差网络,它会在每个卷积层中添加一个残差连接。你可以通过调整`num_layers`参数来配置卷积层的深度。这个模型还包含了两个全连接层,用于最终的分类任务。
阅读全文