BP神经网络主轴承预警代码
时间: 2023-09-03 12:07:00 浏览: 56
BP神经网络代码
以下是一个简单的BP神经网络主轴承预警代码示例:
```python
import numpy as np
class BPNN:
def __init__(self, input_size, hidden_size, output_size, learning_rate):
self.input_size = input_size
self.hidden_size = hidden_size
self.output_size = output_size
self.learning_rate = learning_rate
self.weights1 = np.random.randn(hidden_size, input_size+1)
self.weights2 = np.random.randn(output_size, hidden_size+1)
def sigmoid(self, x):
return 1 / (1 + np.exp(-x))
def sigmoid_derivative(self, x):
return x * (1 - x)
def forward(self, x):
x = np.append(x, [1])
hidden = self.sigmoid(np.dot(self.weights1, x))
hidden = np.append(hidden, [1])
output = self.sigmoid(np.dot(self.weights2, hidden))
return output
def train(self, x, y):
x = np.append(x, [1])
hidden = self.sigmoid(np.dot(self.weights1, x))
hidden = np.append(hidden, [1])
output = self.sigmoid(np.dot(self.weights2, hidden))
output_error = y - output
output_delta = output_error * self.sigmoid_derivative(output)
hidden_error = np.dot(self.weights2.T, output_delta)
hidden_delta = hidden_error[:-1] * self.sigmoid_derivative(hidden[:-1])
self.weights2 += self.learning_rate * np.outer(output_delta, hidden)
self.weights1 += self.learning_rate * np.outer(hidden_delta, x)
```
然后,我们可以使用上面的代码来训练一个BP神经网络模型来进行主轴承预警,例如:
```python
input_data = np.array([[0.1, 0.2, 0.3],
[0.4, 0.5, 0.6],
[0.7, 0.8, 0.9]])
labels = np.array([[0.1], [0.3], [0.5]])
bpnn = BPNN(input_size=3, hidden_size=4, output_size=1, learning_rate=0.1)
for i in range(1000):
for j in range(len(input_data)):
bpnn.train(input_data[j], labels[j])
```
在训练完成之后,我们可以使用 `bpnn.forward()` 方法来进行预测,例如:
```python
test_input = np.array([0.2, 0.3, 0.4])
prediction = bpnn.forward(test_input)
print(prediction)
```
这里的 `prediction` 就是模型对于输入数据 `[0.2, 0.3, 0.4]` 的预测输出。
阅读全文