解释一下这段代码:class QNet(nn.Module): def __init__(self): super(QNet, self).__init__() self.fc1 = nn.Linear(1, 10) self.fc2 = nn.Linear(10, 1) def forward(self, x): x = torch.relu(self.fc1(x)) x = self.fc2(x) return x
时间: 2024-02-14 11:32:49 浏览: 121
这段代码定义了一个神经网络模型类 `QNet`,它继承了 `nn.Module` 类。
在 `__init__` 函数中,模型定义了两个全连接层,分别是 `self.fc1` 和 `self.fc2`。其中,`self.fc1` 的输入维度是 1,输出维度是 10;`self.fc2` 的输入维度是 10,输出维度是 1。这意味着输入一个维度为 1 的向量,经过第一个全连接层得到一个维度为 10 的向量,再经过第二个全连接层得到一个维度为 1 的向量。
在 `forward` 函数中,定义了模型的前向传播过程。输入数据 `x` 经过第一个全连接层后使用 `relu` 激活函数处理,然后传给第二个全连接层输出,最终返回输出结果 `x`。这个模型的作用是将输入的一个维度为 1 的数据映射到一个维度为 1 的输出数据,这在一些简单的强化学习问题中可能会有用。
相关问题
class Qnet(torch.nn.Module): """ 只有一层隐藏层的Q网络 """ def __init__(self, state_dim, hidden_dim, action_dim): super(Qnet, self).__init__() self.fc1 = torch.nn.Linear(state_dim, hidden_dim) self.fc2 = torch.nn.Linear(hidden_dim, action_dim) def forward(self, x): x = F.relu(self.fc1(x)) # 隐藏层使用ReLU激活函数 return self.fc2(x) 解释
这段代码定义了一个只有一层隐藏层的Q网络(Qnet),用于近似Q值函数。
在初始化方法(__init__)中,Qnet类接受三个参数:state_dim(状态维度)、hidden_dim(隐藏层维度)和action_dim(动作维度)。首先,调用父类的初始化方法`super(Qnet, self).__init__()`来确保正确初始化父类的属性。
接下来,通过torch.nn.Linear函数定义了两个全连接层,分别是self.fc1和self.fc2。self.fc1是输入层到隐藏层的线性变换(全连接层),它的输入维度为state_dim,输出维度为hidden_dim。self.fc2是隐藏层到输出层的线性变换,它的输入维度为hidden_dim,输出维度为action_dim。
在前向传播方法(forward)中,输入数据x通过self.fc1进行线性变换,并经过ReLU激活函数进行非线性变换。然后,将变换后的结果输入到self.fc2进行线性变换,得到最终的输出。最后一层没有添加激活函数,因为Q值可以是任意实数。
这样,Qnet类就定义好了一个只有一层隐藏层的Q网络模型,并且可以通过调用forward方法来进行前向传播计算。
tianshou基于pytorch的sac连续空间的算法,并输出每个网络训练模型pth文件的代码,并利用writer.add输出网络的可视图
以下是基于PyTorch的SAC算法的代码,包括输出每个网络训练模型pth文件和使用writer.add输出网络可视图:
```python
import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.tensorboard import SummaryWriter
import gym
import numpy as np
# 定义神经网络
class QNet(nn.Module):
def __init__(self, state_dim, action_dim, hidden_dim):
super(QNet, self).__init__()
self.fc1 = nn.Linear(state_dim + action_dim, hidden_dim)
self.fc2 = nn.Linear(hidden_dim, hidden_dim)
self.fc3 = nn.Linear(hidden_dim, 1)
def forward(self, state, action):
x = torch.cat([state, action], dim=-1)
x = nn.functional.relu(self.fc1(x))
x = nn.functional.relu(self.fc2(x))
x = self.fc3(x)
return x
# 定义SAC算法
class SAC:
def __init__(self, state_dim, action_dim, hidden_dim, gamma, tau, alpha, device):
self.q_net1 = QNet(state_dim, action_dim, hidden_dim).to(device)
self.q_net2 = QNet(state_dim, action_dim, hidden_dim).to(device)
self.target_q_net1 = QNet(state_dim, action_dim, hidden_dim).to(device)
self.target_q_net2 = QNet(state_dim, action_dim, hidden_dim).to(device)
self.policy_net = PolicyNet(state_dim, action_dim, hidden_dim).to(device)
self.gamma = gamma
self.tau = tau
self.alpha = alpha
self.device = device
self.writer = SummaryWriter()
def select_action(self, state):
state = torch.FloatTensor(state).unsqueeze(0).to(self.device)
action, _, _ = self.policy_net.sample(state)
return action.cpu().detach().numpy()[0]
def update(self, replay_buffer, batch_size):
# 从回放缓存中采样随机批次
state, action, next_state, reward, done = replay_buffer.sample(batch_size)
state = torch.FloatTensor(state).to(self.device)
action = torch.FloatTensor(action).to(self.device)
next_state = torch.FloatTensor(next_state).to(self.device)
reward = torch.FloatTensor(reward).unsqueeze(1).to(self.device)
done = torch.FloatTensor(np.float32(done)).unsqueeze(1).to(self.device)
# 更新Q网络
target_q_value = reward + (1 - done) * self.gamma * torch.min(
self.target_q_net1(next_state, self.policy_net(next_state))[0],
self.target_q_net2(next_state, self.policy_net(next_state))[0]
)
q_value_loss1 = nn.functional.mse_loss(self.q_net1(state, action), target_q_value.detach())
q_value_loss2 = nn.functional.mse_loss(self.q_net2(state, action), target_q_value.detach())
self.writer.add_scalar('Loss/Q1', q_value_loss1, global_step=self.step)
self.writer.add_scalar('Loss/Q2', q_value_loss2, global_step=self.step)
self.q_optim1.zero_grad()
q_value_loss1.backward()
self.q_optim1.step()
self.q_optim2.zero_grad()
q_value_loss2.backward()
self.q_optim2.step()
# 更新策略网络
new_action, log_prob, _ = self.policy_net.sample(state)
q1_new = self.q_net1(state, new_action)
q2_new = self.q_net2(state, new_action)
q_new = torch.min(q1_new, q2_new)
policy_loss = (self.alpha * log_prob - q_new).mean()
self.writer.add_scalar('Loss/Policy', policy_loss, global_step=self.step)
self.policy_optim.zero_grad()
policy_loss.backward()
self.policy_optim.step()
# 更新目标Q网络
self.soft_update(self.target_q_net1, self.q_net1)
self.soft_update(self.target_q_net2, self.q_net2)
def soft_update(self, target_net, eval_net):
for target_param, param in zip(target_net.parameters(), eval_net.parameters()):
target_param.data.copy_(self.tau * param.data + (1 - self.tau) * target_param.data)
def train(self, env, replay_buffer, batch_size, episodes, steps_per_episode):
self.q_optim1 = optim.Adam(self.q_net1.parameters(), lr=3e-4)
self.q_optim2 = optim.Adam(self.q_net2.parameters(), lr=3e-4)
self.policy_optim = optim.Adam(self.policy_net.parameters(), lr=3e-4)
state_dim = env.observation_space.shape[0]
action_dim = env.action_space.shape[0]
for episode in range(episodes):
state = env.reset()
episode_reward = 0
for step in range(steps_per_episode):
self.step = episode * steps_per_episode + step
action = self.select_action(state)
next_state, reward, done, _ = env.step(action)
replay_buffer.add(state, action, next_state, reward, done)
state = next_state
episode_reward += reward
if len(replay_buffer) > batch_size:
self.update(replay_buffer, batch_size)
if done:
break
self.writer.add_scalar('Reward', episode_reward, global_step=episode)
print(f'Episode {episode} reward: {episode_reward}')
# 保存模型
torch.save(self.q_net1.state_dict(), 'q_net1.pth')
torch.save(self.q_net2.state_dict(), 'q_net2.pth')
torch.save(self.policy_net.state_dict(), 'policy_net.pth')
# 输出网络可视图
state = env.reset()
self.writer.add_graph(self.q_net1, (torch.FloatTensor(state).to(self.device),
torch.FloatTensor(env.action_space.sample()).to(self.device)))
self.writer.add_graph(self.q_net2, (torch.FloatTensor(state).to(self.device),
torch.FloatTensor(env.action_space.sample()).to(self.device)))
self.writer.add_graph(self.policy_net, torch.FloatTensor(state).to(self.device))
```
调用SAC类的train方法,即可开始训练并输出每个网络训练模型pth文件和网络可视图:
```python
env = gym.make('Pendulum-v0')
replay_buffer = ReplayBuffer(1000000)
sac = SAC(state_dim=env.observation_space.shape[0],
action_dim=env.action_space.shape[0],
hidden_dim=256,
gamma=0.99,
tau=0.005,
alpha=0.2,
device='cuda')
sac.train(env, replay_buffer, batch_size=256, episodes=100, steps_per_episode=200)
```
阅读全文