model.load_state_dict(torch.load(f"{_weight_name}_best.ckpt"))
时间: 2024-05-17 07:14:13 浏览: 122
你可以使用`torch.load()`函数加载模型的权重。 `f"{_weight_name}_best.ckpt"`是你保存的模型权重的路径,可以是一个文件名或一个完整的文件路径。然后,你可以使用`model.load_state_dict()`方法将权重加载到你的模型中。这个方法接受一个字典作为参数,该字典包含了模型的状态字典。注意,你需要确保加载的权重与你的模型具有相同的架构和参数名称。
相关问题
model_sav.seek(0) dict_list = torch.load(model_sav) agent.ModalFusion.load_state_dict(dict_list[0]) agent.GraphConstruct.load_state_dict(dict_list[1]) agent.MessagePassing.load_state_dict(dict_list[2])
你想知道这段代码的作用是什么吗?这段代码是从一个保存的模型文件中读取并加载了多个子模型的权重参数,将它们加载到agent对象中的各自成员变量中,以便后续使用。具体而言,dict_list变量是一个列表,其中包含了子模型ModalFusion、GraphConstruct和MessagePassing的权重参数。load_state_dict()函数是将相应子模型的权重参数加载到agent对象的成员变量中。最后,整个模型就被加载好了。
def xceptionRGBD(arch,pretrained=False, **kwargs): model = XceptionRGBD(**kwargs) if pretrained: model.load_state_dict(model_zoo.load_url(model_urls['xception'])) model_dict = model.state_dict() model_keys = model_dict.keys() state_keys = model.state_dict.keys() for key in model_keys: if key in state_keys: if key == 'conv1.weight': continue model_dict[key] = model.state_dict[key] model.load_state_dict(model_dict, strict=True) return model
这段代码定义了一个名为 xceptionRGBD 的函数,函数的作用是返回一个 XceptionRGBD 模型。如果 pretrained 参数为 True,那么该模型会加载预训练权重。在加载预训练权重时,代码首先会使用 model_zoo.load_url() 函数从网络上下载预训练权重,并将其加载到模型中。然后,代码会遍历模型的 state_dict,并将其与预训练权重进行匹配。在这个过程中,代码会跳过 conv1.weight 权重,因为该权重的维度与预训练权重不匹配。最后,将匹配后的 state_dict 加载到模型中,并返回该模型。
阅读全文