def xceptionRGBD(arch,pretrained=False,**kwargs): """ Construct Xception. """ model = XceptionRGBD(**kwargs) if pretrained: model.load_state_dict(model_zoo.load_url(model_urls['xception'])) model_dict = model.state_dict() model_keys = model_dict.keys() state_keys = model.state_dict.keys() for key in model_keys: if key in state_keys: # print(key) if key == 'conv1.weight': continue model_dict[key] = model.state_dict[key] model.load_state_dict(model_dict, strict=True) return model
时间: 2024-03-15 13:43:11 浏览: 88
这段代码实现了一个XceptionRGBD模型的构建,并可以选择是否使用预训练模型。如果选择使用预训练模型,它会下载预训练模型并将其加载到新模型中。然后,为了使新模型与预训练模型的参数匹配,它会对conv1.weight以外的所有参数进行复制。如果conv1.weight的形状不匹配,它会跳过这个参数的复制。
需要注意的是,代码中使用了model_zoo.load_url()函数来下载预训练模型的权重。这个函数已经被弃用了,现在应该使用torch.hub.load_state_dict_from_url()函数来代替。使用方法类似,只是函数名不同。而且,需要将预训练模型的URL作为参数传递给函数,而不是使用model_urls字典。
相关问题
def xceptionRGBD(arch,pretrained=False, **kwargs): model = XceptionRGBD(**kwargs) if pretrained: model.load_state_dict(model_zoo.load_url(model_urls['xception'])) model_dict = model.state_dict() model_keys = model_dict.keys() state_keys = model.state_dict.keys() for key in model_keys: if key in state_keys: if key == 'conv1.weight': continue model_dict[key] = model.state_dict[key] model.load_state_dict(model_dict, strict=True) return model
这段代码定义了一个名为 xceptionRGBD 的函数,函数的作用是返回一个 XceptionRGBD 模型。如果 pretrained 参数为 True,那么该模型会加载预训练权重。在加载预训练权重时,代码首先会使用 model_zoo.load_url() 函数从网络上下载预训练权重,并将其加载到模型中。然后,代码会遍历模型的 state_dict,并将其与预训练权重进行匹配。在这个过程中,代码会跳过 conv1.weight 权重,因为该权重的维度与预训练权重不匹配。最后,将匹配后的 state_dict 加载到模型中,并返回该模型。
def xception(arch, block, layers, pretrained, progress, **kwargs): model = Xception(block, layers, **kwargs) if pretrained: state_dict = load_state_dict_from_url(model_urls[arch], progress=progress) # w_dict = checkpoint['model_state'] model_dict = model.state_dict() model_keys = model_dict.keys() state_keys = state_dict.keys() for key in model_keys: if key in state_keys: # print(key) # if key == 'conv1.weight': # continue model_dict[key] = state_dict[key] model.load_state_dict(model_dict, strict=True) # model.load_state_dict(state_dict) return model
这段代码是定义了一个名为 `xception` 的函数,可以接收多个参数。根据函数定义,`arch`、`block` 和 `layers` 这三个参数是必须提供的,而 `pretrained` 和 `progress` 这两个参数则有默认值。在函数体内,首先使用传入的参数创建了一个 Xception 模型,并在需要时将其加载预训练权重。如果 `pretrained` 参数为 True,则会从预定义的 URL 中下载对应的权重文件,并将其加载到模型中。加载预训练权重的过程会比较耗时,建议使用 GPU 来加速运算。最后,函数返回创建的模型对象。
从报错信息来看,问题出现在调用 `xception` 函数时缺少了 4 个必须的参数:`arch`、`block`、`layers` 和 `progress`。建议检查代码中调用 `xception` 函数的地方,确保传入了正确数量的参数。
阅读全文