import numpy as np class Perceptron: def __init__(self, input_size, lr=0.01, epochs=100): self.W = np.zeros(input_size + 1) self.lr = lr self.epochs = epochs def sigmoid(self, x): return 1 / (1 + np.exp(-x)) def fit(self, X): for i in range(self.epochs): for j in range(len(X)): y_pred = np.dot(X[j].reshape(-1, 1), self.W) * self.sigmoid(X[j]) error = y_pred - X[j][0] delta = error * self.sigmoid(X[j]) * (1 - self.sigmoid(X[j])) self.W = self.W - self.lr * np.dot(X[j].reshape(-1, 1).T, delta) self.W = self.W * self.lr * (1 - self.sigmoid(X[j])) def predict(self, X): y_pred = np.dot(X.reshape(-1, 1), self.W) * self.sigmoid(X) return np.where(y_pred == 1, 1, -1) X = np.array([[1, 1, -1], [1, 2, -1], [2, 2, -1], [2, 1, -1], [3, 3, 1], [3, 4, 1], [4, 4, 1], [4, 3, 1]]) perceptron = Perceptron(input_size=3) perceptron.fit(X)

时间: 2023-06-08 13:07:44 浏览: 172
你给出的代码似乎是一个感知器的实现,其中Perceptron类的构造函数__init__接受三个参数,分别是input_size、lr和epochs,其中input_size指定了输入的特征维度,lr指定了学习率,epochs指定了要训练的轮数。在__init__中,初始化了权重W为一个input_size+1维的零向量,lr和epochs被保存在实例变量中。感知器还定义了一个sigmoid函数,用于计算激活函数的值。fit方法实现了感知器的训练过程,其中X是一个输入数据的矩阵,在每一轮下通过循环遍历X中的每一条样本,用W计算出预测值y_pred,然后计算误差error,按照误差进行权重的更新,最终返回训练好的模型。predict方法接受X一个样本特征,通过训练好的W计算出预测值,并返回二元分类结果。
相关问题

此段代码报错怎么修改import numpy as np class Perceptron: def __init__(self, input_size, lr=0.01, epochs=100): self.W = np.zeros(input_size + 1) self.lr = lr self.epochs = epochs def sigmoid(self, x): return 1 / (1 + np.exp(-x)) def fit(self, X): for i in range(self.epochs): for j in range(len(X)): y_pred = np.dot(X[j].reshape(-1, 1), self.W) * self.sigmoid(X[j]) error = y_pred - X[j][0] delta = error * self.sigmoid(X[j]) * (1 - self.sigmoid(X[j])) self.W = self.W - self.lr * np.dot(X[j].reshape(-1, 1).T, delta) self.W = self.W * self.lr * (1 - self.sigmoid(X[j])) def predict(self, X): y_pred = np.dot(X.reshape(-1, 1), self.W) * self.sigmoid(X) return np.where(y_pred == 1, 1, -1) X = np.array([[1, 1, -1], [1, 2, -1], [2, 2, -1], [2, 1, -1], [3, 3, 1], [3, 4, 1], [4, 4, 1], [4, 3, 1]]) perceptron = Perceptron(input_size=3) perceptron.fit(X)

这段代码的报错可能是因为在初始化权重 self.W 时,括号不完整,应该是 np.zeros((input_size, 1)) 。 修改后的代码如下: import numpy as np class Perceptron: def __init__(self, input_size, lr=0.01, epochs=100): self.W = np.zeros((input_size, 1)) self.lr = lr self.epochs = epochs def sigmoid(self, x): return 1 / (1 + np.exp(-x)) def fit(self, X): for i in range(self.epochs): for j in range(len(X)): y_pred = np.dot(X[j].reshape(-1, 1), self.W) * self.sigmoid(X[j]) error = y_pred - X[j][0] delta = error * self.sigmoid(X[j]) * (1 - self.sigmoid(X[j])) self.W = self.W - self.lr * np.dot(X[j].reshape(-1, 1).T, delta) self.W = self.W * self.lr * (1 - self.sigmoid(X[j])) def predict(self, X): y_pred = np.dot(X.reshape(-1, 1), self.W) * self.sigmoid(X) return np.where(y_pred == 1, 1, -1) X = np.array([[1, 1, -1], [1, 2, -1], [2, 2, -1], [2, 1, -1], [3, 3, 1], [3, 4, 1], [4, 4, 1], [4, 3, 1]]) perceptron = Perceptron(input_size=3) perceptron.fit(X)

import numpy as np class LinearReg(object): def __init__(self, indim=1, outdim=1):

### 回答1: self.indim = indim self.outdim = outdim self.w = np.zeros((indim, outdim))我们可以使用numpy中的“zeros”方法,将LinearReg类中的权重(w)设置为零向量,以表示输入维度和输出维度。 ### 回答2: import numpy as np class LinearReg(object): def __init__(self, indim=1, outdim=1): # 初始化线性回归模型参数 self.w = np.zeros((outdim, indim)) # 初始化权重参数为零行向量 self.b = np.zeros((outdim, 1)) # 初始化偏置参数为零向量 def forward(self, x): # 前向传播 y_pred = np.dot(self.w, x) + self.b return y_pred def loss(self, y_true, y_pred): # 计算损失 loss_val = np.mean((y_true - y_pred)**2) return loss_val def backward(self, x, y_true, y_pred): # 反向传播,更新参数 m = x.shape[1] # 样本数量 dw = (-2 / m) * np.dot((y_true - y_pred), x.T) # 计算权重参数偏导数 db = (-2 / m) * np.sum(y_true - y_pred) # 计算偏置参数偏导数 self.w -= dw # 更新权重参数 self.b -= db # 更新偏置参数 def train(self, x, y_true, epochs=100, learning_rate=0.01): # 训练模型 for epoch in range(epochs): y_pred = self.forward(x) # 前向传播,得到预测值 loss_val = self.loss(y_true, y_pred) # 计算损失 self.backward(x, y_true, y_pred) # 反向传播,更新参数 # 输出当前训练轮次和对应的损失值 print('Epoch: {}/{}, Loss: {}'.format(epoch+1, epochs, loss_val)) def predict(self, x): # 对输入样本进行预测 y_pred = self.forward(x) return y_pred ### 回答3: `import numpy as np` `class LinearReg(object):` 这段代码首先导入了numpy库,并将其命名为np。这个库是用来进行科学计算和数据分析的。然后定义了一个类`LinearReg`。类是一种编程方式,用于封装数据和方法,并可以创建类的实例对象。 `def __init__(self, indim=1, outdim=1):` 这个代码段定义了`LinearReg`类的初始化方法`__init__`。这个方法是在创建类的实例对象时自动调用的。在这个方法中,使用`self`关键字来表示类的实例对象。 `self`参数是用来传入实例对象本身的,类中的其他方法可以通过`self`来访问实例对象的属性和方法。`__init__`方法中的`indim=1`和`outdim=1`是定义了两个参数`indim`和`outdim`的默认值,这两个参数分别表示输入维度和输出维度。 该`LinearReg`类的初始化方法是用来初始化类的实例对象的属性和状态。在这个方法中可以完成一些初始化操作,例如设置默认参数值,创建实例对象的属性等。
阅读全文

相关推荐

import torch import torch.nn as nn import torch.optim as optim import numpy as np 定义基本循环神经网络模型 class RNNModel(nn.Module): def init(self, rnn_type, input_size, hidden_size, output_size, num_layers=1): super(RNNModel, self).init() self.rnn_type = rnn_type self.input_size = input_size self.hidden_size = hidden_size self.output_size = output_size self.num_layers = num_layers self.encoder = nn.Embedding(input_size, hidden_size) if rnn_type == 'RNN': self.rnn = nn.RNN(hidden_size, hidden_size, num_layers) elif rnn_type == 'GRU': self.rnn = nn.GRU(hidden_size, hidden_size, num_layers) self.decoder = nn.Linear(hidden_size, output_size) def forward(self, input, hidden): input = self.encoder(input) output, hidden = self.rnn(input, hidden) output = output.view(-1, self.hidden_size) output = self.decoder(output) return output, hidden def init_hidden(self, batch_size): if self.rnn_type == 'RNN': return torch.zeros(self.num_layers, batch_size, self.hidden_size) elif self.rnn_type == 'GRU': return torch.zeros(self.num_layers, batch_size, self.hidden_size) 定义数据集 with open('汉语音节表.txt', encoding='utf-8') as f: chars = f.readline() chars = list(chars) idx_to_char = list(set(chars)) char_to_idx = dict([(char, i) for i, char in enumerate(idx_to_char)]) corpus_indices = [char_to_idx[char] for char in chars] 定义超参数 input_size = len(idx_to_char) hidden_size = 256 output_size = len(idx_to_char) num_layers = 1 batch_size = 32 num_steps = 5 learning_rate = 0.01 num_epochs = 100 定义模型、损失函数和优化器 model = RNNModel('RNN', input_size, hidden_size, output_size, num_layers) criterion = nn.CrossEntropyLoss() optimizer = optim.Adam(model.parameters(), lr=learning_rate) 训练模型 for epoch in range(num_epochs): model.train() hidden = model.init_hidden(batch_size) loss = 0 for X, Y in data_iter_consecutive(corpus_indices, batch_size, num_steps): optimizer.zero_grad() hidden = hidden.detach() output, hidden = model(X, hidden) loss = criterion(output, Y.view(-1)) loss.backward() torch.nn.utils.clip_grad_norm_(model.parameters(), max_norm=1.0) optimizer.step() if epoch % 10 == 0: print(f"Epoch {epoch}, Loss: {loss.item()}")请正确缩进代码

下面的这段python代码,哪里有错误,修改一下:import numpy as np import matplotlib.pyplot as plt import pandas as pd import torch import torch.nn as nn from torch.autograd import Variable from sklearn.preprocessing import MinMaxScaler training_set = pd.read_csv('CX2-36_1971.csv') training_set = training_set.iloc[:, 1:2].values def sliding_windows(data, seq_length): x = [] y = [] for i in range(len(data) - seq_length): _x = data[i:(i + seq_length)] _y = data[i + seq_length] x.append(_x) y.append(_y) return np.array(x), np.array(y) sc = MinMaxScaler() training_data = sc.fit_transform(training_set) seq_length = 1 x, y = sliding_windows(training_data, seq_length) train_size = int(len(y) * 0.8) test_size = len(y) - train_size dataX = Variable(torch.Tensor(np.array(x))) dataY = Variable(torch.Tensor(np.array(y))) trainX = Variable(torch.Tensor(np.array(x[1:train_size]))) trainY = Variable(torch.Tensor(np.array(y[1:train_size]))) testX = Variable(torch.Tensor(np.array(x[train_size:len(x)]))) testY = Variable(torch.Tensor(np.array(y[train_size:len(y)]))) class LSTM(nn.Module): def __init__(self, num_classes, input_size, hidden_size, num_layers): super(LSTM, self).__init__() self.num_classes = num_classes self.num_layers = num_layers self.input_size = input_size self.hidden_size = hidden_size self.seq_length = seq_length self.lstm = nn.LSTM(input_size=input_size, hidden_size=hidden_size, num_layers=num_layers, batch_first=True) self.fc = nn.Linear(hidden_size, num_classes) def forward(self, x): h_0 = Variable(torch.zeros( self.num_layers, x.size(0), self.hidden_size)) c_0 = Variable(torch.zeros( self.num_layers, x.size(0), self.hidden_size)) # Propagate input through LSTM ula, (h_out, _) = self.lstm(x, (h_0, c_0)) h_out = h_out.view(-1, self.hidden_size) out = self.fc(h_out) return out num_epochs = 2000 learning_rate = 0.001 input_size = 1 hidden_size = 2 num_layers = 1 num_classes = 1 lstm = LSTM(num_classes, input_size, hidden_size, num_layers) criterion = torch.nn.MSELoss() # mean-squared error for regression optimizer = torch.optim.Adam(lstm.parameters(), lr=learning_rate) # optimizer = torch.optim.SGD(lstm.parameters(), lr=learning_rate) runn = 10 Y_predict = np.zeros((runn, len(dataY))) # Train the model for i in range(runn): print('Run: ' + str(i + 1)) for epoch in range(num_epochs): outputs = lstm(trainX) optimizer.zero_grad() # obtain the loss function loss = criterion(outputs, trainY) loss.backward() optimizer.step() if epoch % 100 == 0: print("Epoch: %d, loss: %1.5f" % (epoch, loss.item())) lstm.eval() train_predict = lstm(dataX) data_predict = train_predict.data.numpy() dataY_plot = dataY.data.numpy() data_predict = sc.inverse_transform(data_predict) dataY_plot = sc.inverse_transform(dataY_plot) Y_predict[i,:] = np.transpose(np.array(data_predict)) Y_Predict = np.mean(np.array(Y_predict)) Y_Predict_T = np.transpose(np.array(Y_Predict))

最新推荐

recommend-type

解决keras,val_categorical_accuracy:,0.0000e+00问题

import numpy as np # 假设x_train和y_train是训练数据和对应的标签 index = [i for i in range(len(x_train))] np.random.shuffle(index) x_train = x_train[index] y_train = y_train[index] # 继续进行模型训练...
recommend-type

YOLOv5_DOTA_OBB-master-Windows运行环境配置.pdf

- 安装项目依赖:使用pip安装额外的Python库,如opencv-python、numpy等。 - 配置项目文件:根据项目文档调整配置文件,如数据集路径、模型参数等。 - 运行项目:使用Python启动训练或推理脚本。 在实际操作过程...
recommend-type

Python图像处理之直线和曲线的拟合与绘制【curve_fit()应用】

import numpy as np from scipy.optimize import curve_fit def f_1(x, A, B): return A * x + B # 假设我们有数据点 (x0, y0) x0 = np.array([1, 2, 3, 4, 5]) y0 = np.array([1, 3, 8, 18, 36]) # 使用curve_...
recommend-type

Pandas的read_csv函数参数分析详解

43. **as_recarray**: 如果True,返回NumPy的记录数组。 44. **compact_ints**: 如果True,使用更紧凑的整数存储。 45. **use_unsigned**: 对于无符号整数,使用NumPy的无符号类型。 46. **low_memory**: 默认...
recommend-type

pytorch之inception_v3的实现案例

首先,我们需要导入必要的库,如torch、torch.nn、torch.optim、numpy、torchvision等,这些库提供了构建和训练神经网络所需的函数和类。在导入后,我们检查PyTorch和torchvision的版本,确保我们使用的库是最新的。...
recommend-type

Spring Websocket快速实现与SSMTest实战应用

标题“websocket包”指代的是一个在计算机网络技术中应用广泛的组件或技术包。WebSocket是一种网络通信协议,它提供了浏览器与服务器之间进行全双工通信的能力。具体而言,WebSocket允许服务器主动向客户端推送信息,是实现即时通讯功能的绝佳选择。 描述中提到的“springwebsocket实现代码”,表明该包中的核心内容是基于Spring框架对WebSocket协议的实现。Spring是Java平台上一个非常流行的开源应用框架,提供了全面的编程和配置模型。在Spring中实现WebSocket功能,开发者通常会使用Spring提供的注解和配置类,简化WebSocket服务端的编程工作。使用Spring的WebSocket实现意味着开发者可以利用Spring提供的依赖注入、声明式事务管理、安全性控制等高级功能。此外,Spring WebSocket还支持与Spring MVC的集成,使得在Web应用中使用WebSocket变得更加灵活和方便。 直接在Eclipse上面引用,说明这个websocket包是易于集成的库或模块。Eclipse是一个流行的集成开发环境(IDE),支持Java、C++、PHP等多种编程语言和多种框架的开发。在Eclipse中引用一个库或模块通常意味着需要将相关的jar包、源代码或者配置文件添加到项目中,然后就可以在Eclipse项目中使用该技术了。具体操作可能包括在项目中添加依赖、配置web.xml文件、使用注解标注等方式。 标签为“websocket”,这表明这个文件或项目与WebSocket技术直接相关。标签是用于分类和快速检索的关键字,在给定的文件信息中,“websocket”是核心关键词,它表明该项目或文件的主要功能是与WebSocket通信协议相关的。 文件名称列表中的“SSMTest-master”暗示着这是一个版本控制仓库的名称,例如在GitHub等代码托管平台上。SSM是Spring、SpringMVC和MyBatis三个框架的缩写,它们通常一起使用以构建企业级的Java Web应用。这三个框架分别负责不同的功能:Spring提供核心功能;SpringMVC是一个基于Java的实现了MVC设计模式的请求驱动类型的轻量级Web框架;MyBatis是一个支持定制化SQL、存储过程以及高级映射的持久层框架。Master在这里表示这是项目的主分支。这表明websocket包可能是一个SSM项目中的模块,用于提供WebSocket通讯支持,允许开发者在一个集成了SSM框架的Java Web应用中使用WebSocket技术。 综上所述,这个websocket包可以提供给开发者一种简洁有效的方式,在遵循Spring框架原则的同时,实现WebSocket通信功能。开发者可以利用此包在Eclipse等IDE中快速开发出支持实时通信的Web应用,极大地提升开发效率和应用性能。
recommend-type

电力电子技术的智能化:数据中心的智能电源管理

# 摘要 本文探讨了智能电源管理在数据中心的重要性,从电力电子技术基础到智能化电源管理系统的实施,再到技术的实践案例分析和未来展望。首先,文章介绍了电力电子技术及数据中心供电架构,并分析了其在能效提升中的应用。随后,深入讨论了智能化电源管理系统的组成、功能、监控技术以及能
recommend-type

通过spark sql读取关系型数据库mysql中的数据

Spark SQL是Apache Spark的一个模块,它允许用户在Scala、Python或SQL上下文中查询结构化数据。如果你想从MySQL关系型数据库中读取数据并处理,你可以按照以下步骤操作: 1. 首先,你需要安装`PyMySQL`库(如果使用的是Python),它是Python与MySQL交互的一个Python驱动程序。在命令行输入 `pip install PyMySQL` 来安装。 2. 在Spark环境中,导入`pyspark.sql`库,并创建一个`SparkSession`,这是Spark SQL的入口点。 ```python from pyspark.sql imp
recommend-type

新版微软inspect工具下载:32位与64位版本

根据给定文件信息,我们可以生成以下知识点: 首先,从标题和描述中,我们可以了解到新版微软inspect.exe与inspect32.exe是两个工具,它们分别对应32位和64位的系统架构。这些工具是微软官方提供的,可以用来下载获取。它们源自Windows 8的开发者工具箱,这是一个集合了多种工具以帮助开发者进行应用程序开发与调试的资源包。由于这两个工具被归类到开发者工具箱,我们可以推断,inspect.exe与inspect32.exe是用于应用程序性能检测、问题诊断和用户界面分析的工具。它们对于开发者而言非常实用,可以在开发和测试阶段对程序进行深入的分析。 接下来,从标签“inspect inspect32 spy++”中,我们可以得知inspect.exe与inspect32.exe很有可能是微软Spy++工具的更新版或者是有类似功能的工具。Spy++是Visual Studio集成开发环境(IDE)的一个组件,专门用于Windows应用程序。它允许开发者观察并调试与Windows图形用户界面(GUI)相关的各种细节,包括窗口、控件以及它们之间的消息传递。使用Spy++,开发者可以查看窗口的句柄和类信息、消息流以及子窗口结构。新版inspect工具可能继承了Spy++的所有功能,并可能增加了新功能或改进,以适应新的开发需求和技术。 最后,由于文件名称列表仅提供了“ed5fa992d2624d94ac0eb42ee46db327”,没有提供具体的文件名或扩展名,我们无法从这个文件名直接推断出具体的文件内容或功能。这串看似随机的字符可能代表了文件的哈希值或是文件存储路径的一部分,但这需要更多的上下文信息来确定。 综上所述,新版的inspect.exe与inspect32.exe是微软提供的开发者工具,与Spy++有类似功能,可以用于程序界面分析、问题诊断等。它们是专门为32位和64位系统架构设计的,方便开发者在开发过程中对应用程序进行深入的调试和优化。同时,使用这些工具可以提高开发效率,确保软件质量。由于这些工具来自Windows 8的开发者工具箱,它们可能在兼容性、效率和用户体验上都经过了优化,能够为Windows应用的开发和调试提供更加专业和便捷的解决方案。
recommend-type

如何运用电力电子技术实现IT设备的能耗监控

# 摘要 随着信息技术的快速发展,IT设备能耗监控已成为提升能效和减少环境影响的关键环节。本文首先概述了电力电子技术与IT设备能耗监控的重要性,随后深入探讨了电力电子技术的基础原理及其在能耗监控中的应用。文章详细分析了IT设备能耗监控的理论框架、实践操作以及创新技术的应用,并通过节能改造案例展示了监控系统构建和实施的成效。最后,本文展望了未来能耗监控技术的发展趋势,同时