import numpy as npclass Perceptron: def __init__(self, input_size, lr=1, epochs=100): self.W = np.zeros(input_size+1) self.epochs = epochs self.lr = lr def activation_fn(self, x): return 1 if x >= 0 else 0 def predict(self, x): z = self.W.T.dot(x) a = self.activation_fn(z) return a def fit(self, X, d): for epoch in range(self.epochs): for i in range(d.shape[0]): x = np.insert(X[i], 0, 1) y = self.predict(x) e = d[i] - y self.W = self.W + self.lr * e * x X = np.array([[0,0], [0,1], [1,0], [1,1]])d = np.array([0, 0, 0, 1])perceptron = Perceptron(input_size=2)perceptron.fit(X, d)test_input = np.array([0, 1])print(perceptron.predict(np.insert(test_input, 0, 1)))帮我逐行解释这段代码
时间: 2023-06-06 21:05:06 浏览: 90
这段代码是实现一个感知机(Perceptron)模型的类,可以用于二分类问题。
首先,导入了numpy库并重命名为np。
接下来定义Perceptron类,__init__方法初始化模型参数,包括输入大小、学习率和迭代次数。其中self.W用于存储模型的权重参数,初始值为0。
activation_fn方法是定义激活函数,当输入的值大于等于0时返回1,否则返回0。
predict方法用于进行预测,输入一个样本向量x后,先将其与权重向量W进行内积得到z,然后通过激活函数得到预测值a,最后返回该预测值。
fit方法实现模型的训练,输入参数为训练样本矩阵X和标签向量d。在每个epoch(迭代次数)中,对于每个样本,预测其标签值y,并计算其与真实标签值d之间的误差e。然后根据感知机算法更新权重W,其中self.lr表示学习率。最终将训练得到的权重向量存储在self.W中。
接下来定义了一个X矩阵和对应的标签d用于训练。
声明了一个Perceptron对象perceptron,并用fit方法对其进行训练。
最后定义了一个test_input样本进行预测,并输出对应的预测值。
相关问题
逐句解释一下import numpy as npclass Perceptron: def __init__(self, num_classes, input_size, lr=0.1, epochs=1000): self.num_classes = num_classes self.input_size = input_size self.lr = lr self.epochs = epochs self.weights = np.zeros((num_classes, input_size)) self.biases = np.zeros(num_classes) def train(self, X, y): for epoch in range(self.epochs): for i in range(X.shape[0]): x = X[i] target = y[i] output = self.predict(x) if output != target: self.weights[target] += self.lr * x self.biases[target] += self.lr self.weights[output] -= self.lr * x self.biases[output] -= self.lr def predict(self, x): scores = np.dot(self.weights, x) + self.biases return np.argmax(scores)if __name__ == '__main__': X = np.array([[1, 1], [2, 1], [2, 3], [3, 2]]) y = np.array([0, 0, 1, 1]) num_classes = 2 input_size = 2 perceptron = Perceptron(num_classes, input_size) perceptron.train(X, y) print(perceptron.predict(np.array([1, 2])))
1. `import numpy as np`:导入NumPy库并将其命名为`np`,使得在代码中使用NumPy函数和数组时可以更方便地调用。
2. `class Perceptron:`:定义一个名为`Perceptron`的类。
3. `def __init__(self, num_classes, input_size, lr=0.1, epochs=1000):`:定义一个名为`__init__`的方法,用于初始化`Perceptron`类的实例。该方法包含四个参数:`num_classes`表示分类数目,`input_size`表示每个输入样本的特征数,`lr`表示学习率(默认值为0.1),`epochs`表示训练次数(默认值为1000)。
4. `self.num_classes = num_classes`:将传入的`num_classes`参数赋值给`Perceptron`类的实例变量`num_classes`。
5. `self.input_size = input_size`:将传入的`input_size`参数赋值给`Perceptron`类的实例变量`input_size`。
6. `self.lr = lr`:将传入的`lr`参数赋值给`Perceptron`类的实例变量`lr`。
7. `self.epochs = epochs`:将传入的`epochs`参数赋值给`Perceptron`类的实例变量`epochs`。
8. `self.weights = np.zeros((num_classes, input_size))`:将一个大小为`(num_classes, input_size)`的全零数组赋值给`Perceptron`类的实例变量`weights`,用于存储神经元的权重。
9. `self.biases = np.zeros(num_classes)`:将一个大小为`num_classes`的全零数组赋值给`Perceptron`类的实例变量`biases`,用于存储神经元的偏置。
10. `def train(self, X, y):`:定义一个名为`train`的方法,用于训练神经元模型。该方法包含两个参数:`X`表示输入样本的特征矩阵,`y`表示输入样本的标签向量。
11. `for epoch in range(self.epochs):`:使用`for`循环,遍历所有训练次数。
12. `for i in range(X.shape[0]):`:使用`for`循环,遍历所有输入样本。
13. `x = X[i]`:将当前输入样本的特征向量赋值给变量`x`。
14. `target = y[i]`:将当前输入样本的标签赋值给变量`target`。
15. `output = self.predict(x)`:调用`predict`方法,根据当前输入样本的特征向量预测输出标签,并将结果赋值给变量`output`。
16. `if output != target:`:如果预测输出标签与实际标签不同:
17. `self.weights[target] += self.lr * x`:将目标类别的权重向量加上当前输入样本的特征向量与学习率的乘积。
18. `self.biases[target] += self.lr`:将目标类别的偏置加上学习率。
19. `self.weights[output] -= self.lr * x`:将输出类别的权重向量减去当前输入样本的特征向量与学习率的乘积。
20. `self.biases[output] -= self.lr`:将输出类别的偏置减去学习率。
21. `def predict(self, x):`:定义一个名为`predict`的方法,用于根据输入样本的特征向量预测输出标签。该方法包含一个参数`x`,表示输入样本的特征向量。
22. `scores = np.dot(self.weights, x) + self.biases`:将权重向量与输入样本的特征向量做点积,再加上偏置向量,得到一个分数向量。该分数向量包含每个类别的分数。
23. `return np.argmax(scores)`:返回分数向量中分数最高的类别的索引,即为预测输出标签。
24. `if __name__ == '__main__':`:检查当前模块是否为主模块。
25. `X = np.array([[1, 1], [2, 1], [2, 3], [3, 2]])`:定义一个大小为`(4, 2)`的NumPy数组,包含四个输入样本的特征向量。
26. `y = np.array([0, 0, 1, 1])`:定义一个大小为`(4,)`的NumPy数组,包含四个输入样本的标签。
27. `num_classes = 2`:定义变量`num_classes`,表示分类数目为2。
28. `input_size = 2`:定义变量`input_size`,表示每个输入样本的特征数为2。
29. `perceptron = Perceptron(num_classes, input_size)`:创建一个`Perceptron`类的实例`perceptron`,传入分类数目和每个输入样本的特征数。
30. `perceptron.train(X, y)`:调用`train`方法,训练神经元模型。
31. `print(perceptron.predict(np.array([1, 2])))`:创建一个大小为`(2,)`的NumPy数组作为输入样本的特征向量,调用`predict`方法,预测输出标签,并将结果打印出来。
此段代码报错怎么修改import numpy as np class Perceptron: def __init__(self, input_size, lr=0.01, epochs=100): self.W = np.zeros(input_size + 1) self.lr = lr self.epochs = epochs def sigmoid(self, x): return 1 / (1 + np.exp(-x)) def fit(self, X): for i in range(self.epochs): for j in range(len(X)): y_pred = np.dot(X[j].reshape(-1, 1), self.W) * self.sigmoid(X[j]) error = y_pred - X[j][0] delta = error * self.sigmoid(X[j]) * (1 - self.sigmoid(X[j])) self.W = self.W - self.lr * np.dot(X[j].reshape(-1, 1).T, delta) self.W = self.W * self.lr * (1 - self.sigmoid(X[j])) def predict(self, X): y_pred = np.dot(X.reshape(-1, 1), self.W) * self.sigmoid(X) return np.where(y_pred == 1, 1, -1) X = np.array([[1, 1, -1], [1, 2, -1], [2, 2, -1], [2, 1, -1], [3, 3, 1], [3, 4, 1], [4, 4, 1], [4, 3, 1]]) perceptron = Perceptron(input_size=3) perceptron.fit(X)
这段代码的报错可能是因为在初始化权重 self.W 时,括号不完整,应该是 np.zeros((input_size, 1)) 。
修改后的代码如下:
import numpy as np
class Perceptron:
def __init__(self, input_size, lr=0.01, epochs=100):
self.W = np.zeros((input_size, 1))
self.lr = lr
self.epochs = epochs
def sigmoid(self, x):
return 1 / (1 + np.exp(-x))
def fit(self, X):
for i in range(self.epochs):
for j in range(len(X)):
y_pred = np.dot(X[j].reshape(-1, 1), self.W) * self.sigmoid(X[j])
error = y_pred - X[j][0]
delta = error * self.sigmoid(X[j]) * (1 - self.sigmoid(X[j]))
self.W = self.W - self.lr * np.dot(X[j].reshape(-1, 1).T, delta)
self.W = self.W * self.lr * (1 - self.sigmoid(X[j]))
def predict(self, X):
y_pred = np.dot(X.reshape(-1, 1), self.W) * self.sigmoid(X)
return np.where(y_pred == 1, 1, -1)
X = np.array([[1, 1, -1], [1, 2, -1], [2, 2, -1], [2, 1, -1], [3, 3, 1], [3, 4, 1], [4, 4, 1], [4, 3, 1]])
perceptron = Perceptron(input_size=3)
perceptron.fit(X)
阅读全文