python 定义稳像处理函数
时间: 2023-10-14 11:26:41 浏览: 84
稳像处理是一种图像处理技术,可以通过对图像进行平移、旋转、缩放等操作来消除图像抖动和变形。以下是一个简单的 Python 函数,用于实现稳像处理:
```python
import cv2
def stabilize_image(input_img):
# Convert the input image to grayscale
gray_img = cv2.cvtColor(input_img, cv2.COLOR_BGR2GRAY)
# Detect features in the input image
feature_detector = cv2.ORB_create()
keypoints = feature_detector.detect(gray_img, None)
# Extract descriptors for the detected features
descriptor_extractor = cv2.ORB_create()
keypoints, descriptors = descriptor_extractor.compute(gray_img, keypoints)
# Create a Matcher object to match the features in the input image
matcher = cv2.DescriptorMatcher_create(cv2.DESCRIPTOR_MATCHER_BRUTEFORCE_HAMMING)
matches = matcher.match(descriptors, descriptors)
# Sort the matches by distance
matches.sort(key=lambda x: x.distance, reverse=False)
# Calculate the homography matrix using the best matches
num_best_matches = int(len(matches) * 0.25)
best_matches = matches[:num_best_matches]
src_pts = np.float32([keypoints[m.queryIdx].pt for m in best_matches]).reshape(-1, 1, 2)
dst_pts = np.float32([keypoints[m.trainIdx].pt for m in best_matches]).reshape(-1, 1, 2)
homography, _ = cv2.findHomography(src_pts, dst_pts, cv2.RANSAC, 5.0)
# Apply the homography matrix to the input image
stabilized_img = cv2.warpPerspective(input_img, homography, (input_img.shape[1], input_img.shape[0]))
return stabilized_img
```
这个函数使用了 OpenCV 库来实现稳像处理。它首先将输入图像转换为灰度图像,然后使用 ORB 特征检测器和描述符提取器来检测和提取图像中的特征。接下来,它使用暴力匹配法来匹配这些特征,并使用 RANSAC 算法计算出稳像处理所需的变换矩阵。最后,它使用 warpPerspective 函数将变换矩阵应用到输入图像中,从而实现稳像处理。
阅读全文