lda模型python代码
时间: 2023-09-10 15:10:53 浏览: 115
基于python的LDA模型实现代码
5星 · 资源好评率100%
以下是使用Python实现的LDA模型代码:
```python
import numpy as np
import pandas as pd
import gensim
from gensim import corpora, models
from gensim.models import CoherenceModel
import pyLDAvis.gensim
# 读取数据
data = pd.read_csv('data.csv', encoding='utf-8')
# 数据预处理
texts = []
for i in range(len(data)):
text = data['text'][i]
tokens = gensim.utils.simple_preprocess(text)
texts.append(tokens)
# 构建词典
dictionary = corpora.Dictionary(texts)
print(dictionary)
# 构建语料库
corpus = [dictionary.doc2bow(text) for text in texts]
# 训练模型
lda_model = gensim.models.ldamodel.LdaModel(corpus=corpus,
id2word=dictionary,
num_topics=10,
random_state=1,
update_every=1,
chunksize=100,
passes=10,
alpha='auto',
per_word_topics=True)
# 打印主题
topics = lda_model.print_topics(num_words=10)
for topic in topics:
print(topic)
# 计算主题相似度
coherence_model_lda = CoherenceModel(model=lda_model, texts=texts, dictionary=dictionary, coherence='c_v')
coherence_lda = coherence_model_lda.get_coherence()
print('\nCoherence Score: ', coherence_lda)
# 可视化主题
pyLDAvis.enable_notebook()
vis = pyLDAvis.gensim.prepare(lda_model, corpus, dictionary)
vis
```
其中,我们使用了`gensim`库来构建LDA模型,并使用`pyLDAvis`库进行可视化。需要注意的是,代码中的数据集需要根据具体情况进行修改。
阅读全文