np.append和np.linspace的区别
时间: 2023-11-20 18:54:05 浏览: 79
np.append和np.linspace都是NumPy中的函数,但它们的作用不同。np.append用于在数组的末尾添加值,而np.linspace用于在指定的间隔内返回均匀间隔的数字。
举个例子,如果我们有一个数组a=[1,2,3],我们可以使用np.append(a,4)将值4添加到数组的末尾,结果为[1,2,3,4]。而如果我们使用np.linspace(0,10,5)将返回一个包含5个数字的数组,这些数字在0到10之间均匀分布。
相关问题
import numpy as np import matplotlib.pyplot as plt #1、序列的相加和相乘: n1=np.linspace(0,3,4,dtype=int) x1=np.array([2,0.5,0.9,1]).reshape(1,4) n2=np.linspace(0,7,8,dtype=int) x2=np.linspace(0,0.7,8,dtype=float) n=np.linspace(0,7,8,dtype=int) x1=np.append(x1,np.z
您的代码似乎不完整,末尾缺少一些内容。但是根据您的代码前面的注释,这是一个序列的相加和相乘的例子。其中 `n1` 和 `x1` 分别表示序列1的索引和数值,`n2` 和 `x2` 分别表示序列2的索引和数值,通过 `np.append` 将两个序列合并为一个新的序列 `x`。您的代码应该继续如下所示:
```python
import numpy as np
import matplotlib.pyplot as plt
# 1、序列的相加和相乘:
n1 = np.linspace(0, 3, 4, dtype=int)
x1 = np.array([2, 0.5, 0.9, 1]).reshape(1, 4)
n2 = np.linspace(0, 7, 8, dtype=int)
x2 = np.linspace(0, 0.7, 8, dtype=float)
n = np.linspace(0, 7, 8, dtype=int)
x1 = np.append(x1, np.zeros((1, 4)), axis=1)
x2 = np.append(np.zeros((1, 4)), x2.reshape(1, 8), axis=1)
x = x1 + x2
y = x1 * x2
# 绘制图像
plt.subplot(2, 1, 1)
plt.stem(n, x[0])
plt.title('Sequence Addition')
plt.subplot(2, 1, 2)
plt.stem(n, y[0])
plt.title('Sequence Multiplication')
plt.show()
```
这段代码将两个序列 `x1` 和 `x2` 进行了加法和乘法,并将结果 `x` 和 `y` 分别存储起来。最后使用 `matplotlib` 库将两个序列的图像绘制出来,其中上方的图像表示序列的相加结果,下方的图像表示序列的相乘结果。
grids = [] grids.append(np.linspace(0, 1, s)) grids.append(np.linspace(0, 1, s)) grid = np.vstack([xx.ravel() for xx in np.meshgrid(*grids)]).T grid = grid.reshape(1,s,s,2) grid = torch.tensor(grid, dtype=torch.float)
这段代码的主要作用是生成一个网格,其中grids是一个列表,包含两个np.linspace的返回值,这两个返回值分别表示在0到1之间等间隔地取s个数,也就是生成了一个s行2列的矩阵。接着,使用np.meshgrid函数生成一个网格点矩阵,网格矩阵的每一行都是一对网格点坐标。然后使用ravel函数将二维网格矩阵变成一维数组,再使用vstack函数将多个一维数组按垂直方向堆叠起来形成一个二维数组。最后,使用reshape函数将二维数组变成一个四维数组,第一维为1,后三维分别为s、s和2。最后,将四维数组转换成torch tensor类型。
阅读全文