修改代码为找出区间[-2,40]之间的曲率极大值点的横坐标:mport numpy as np # 定义高斯核函数 def gkernel(x, x0, sig): return np.exp(-(x-x0)**2/(2*sig**2)) # 定义曲率函数 def curvature(x, y): dy = np.gradient(y, x) ddy = np.gradient(dy, x) k = np.abs(ddy) / (1 + dy**2)**1.5 return k # 定义参数和数组 x1 = np.linspace(-2, 40, 10) x2 = np.linspace(-2, 40, 100) sig = 1 w = 1 y_rec = np.zeros_like(x2) curv_list = [] # 计算曲率值 for xi in x2: y = y_rec.copy() for k, xk in enumerate(x1): y += w * gkernel(xi, xk, sig) curv = curvature(x2, y) curv_list.append(curv[0]) # 找到曲率值最大的四个点 idx_max = np.argsort(curv_list)[-10:] x_max = x2[idx_max] x_max_diff = np.diff(x_max) while np.any(x_max_diff < 2): idx = np.argmin(x_max_diff) x_max[idx+1] += 1 x_max_diff = np.diff(x_max) print("曲率最大的十个点的横坐标为:", x_max)
时间: 2023-11-17 10:07:09 浏览: 157
修改代码如下所示,可以找出区间[-2, 40]之间的曲率极大值点的横坐标:
import numpy as np
import matplotlib.pyplot as plt
# 定义高斯核函数
def gkernel(x, x0, sig):
return np.exp(-(x-x0)**2/(2*sig**2))
# 定义曲率函数
def curvature(x, y):
dy = np.gradient(y, x)
ddy = np.gradient(dy, x)
k = np.abs(ddy) / (1 + dy**2)**1.5
return k
# 定义参数和数组
x1 = np.linspace(-2, 40, 1000) # 增加采样点数
x2 = np.linspace(-2, 40, 100)
sig = 1
w = 1
y_rec = np.zeros_like(x2)
curv_list = []
# 计算曲率值
for xi in x2:
y = y_rec.copy()
for k, xk in enumerate(x1):
y += w * gkernel(xi, xk, sig)
curv = curvature(x2, y)
curv_list.append(curv[0])
# 找到曲率值极大的点
idx_max = np.where(np.diff(np.sign(curv_list)) == -2)[0] + 1
x_max = x2[idx_max]
print("区间[-2,40]之间的曲率极大值点的横坐标为:", x_max)
# 绘制曲率函数图像
plt.plot(x2, curv_list)
plt.xlabel('x')
plt.ylabel('Curvature')
plt.title('Curvature Function')
plt.show()
修改后的代码中,除了找曲率极大值点的方法,还增加了绘制曲率函数图像的代码。绘制曲率函数图像可以直观地观察到曲率的变化情况,方便对比和分析。
阅读全文