mport cv2 import numpy as np import glob # 找棋盘格角点 # 阈值 criteria = (cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_MAX_ITER, 30, 0.001) #棋盘格模板规格 w = 9 h = 6 # 世界坐标系中的棋盘格点,例如(0,0,0), (1,0,0), (2,0,0) ....,(8,5,0),去掉Z坐标,记为二维矩阵 objp = np.zeros((w*h,3), np.float32) objp[:,:2] = np.mgrid[0:w,0:h].T.reshape(-1,2) # 储存棋盘格角点的世界坐标和图像坐标对 objpoints = [] # 在世界坐标系中的三维点 imgpoints = [] # 在图像平面的二维点 images = glob.glob('C:/yingxiang/biaoding.png') for fname in images: img = cv2.imread(fname) gray = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY) # 找到棋盘格角点 ret, corners = cv2.findChessboardCorners(gray, (w,h),None) # 如果找到足够点对,将其存储起来 if ret == True: cv2.cornerSubPix(gray,corners,(11,11),(-1,-1),criteria) objpoints.append(objp) imgpoints.append(corners) # 将角点在图像上显示 cv2.drawChessboardCorners(img, (w,h), corners, ret) cv2.imshow('findCorners',img) cv2.waitKey(1) cv2.destroyAllWindows() # 标定 ret, mtx, dist, rvecs, tvecs = cv2.calibrateCamera(objpoints, imgpoints, gray.shape[::-1], None, None) # 去畸变 img2 = cv2.imread('calib/00169.png') h, w = img2.shape[:2] newcameramtx, roi=cv2.getOptimalNewCameraMatrix(mtx,dist,(w,h),0,(w,h)) # 自由比例参数 dst = cv2.undistort(img2, mtx, dist, None, newcameramtx) # 根据前面ROI区域裁剪图片 #x,y,w,h = roi #dst = dst[y:y+h, x:x+w] cv2.imwrite('calibresult.png',dst) # 反投影误差 total_error = 0 for i in range(len(objpoints)): imgpoints2, _ = cv2.projectPoints(objpoints[i], rvecs[i], tvecs[i], mtx, dist) error = cv2.norm(imgpoints[i],imgpoints2, cv2.NORM_L2)/len(imgpoints2) total_error += error print ("total error: ", total_error/len(objpoints))这段代码为什么会报错
时间: 2023-12-07 17:04:34 浏览: 164
您没有提供具体的错误信息,所以我无法确定您遇到的确切问题。请注意,这段代码需要以下库的支持:cv2,numpy和glob。请确保您已正确安装这些库。
在代码中,您需要将以下路径更改为您的图像路径:
```
images = glob.glob('C:/yingxiang/biaoding.png')
```
如果您的图片不在这个路径下,那么您需要将其更改为正确的路径。
此外,在标定阶段,您可能需要调整以下参数以获得更好的结果:
```
criteria = (cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_MAX_ITER, 30, 0.001)
```
这些参数将影响角点的精度和标定的准确性。如果您遇到错误,请提供更多上下文信息,以便我更好地理解您的问题。
相关问题
mport plotly.express as px import pandas as pd fig = px.parallel_coordinates(df2) fig.show()这个图片是空的
这个问题很有可能是因为你的数据集 `df2` 中的某些列中有缺失值或者数据类型不正确。你可以尝试对数据集进行清洗和转换,以确保数据集中的所有列都是正确的数据类型,并且没有缺失值。
此外,你也可以尝试修改 `px.parallel_coordinates()` 函数的一些参数,例如 `color`、`dimensions`、`labels` 等,以查看不同的可视化结果。
如果你需要更详细的帮助,请提供更多的信息,例如你的数据集的结构和内容,以及你的代码。
修改代码为找出区间[-2,40]之间的曲率极大值点的横坐标:mport numpy as np # 定义高斯核函数 def gkernel(x, x0, sig): return np.exp(-(x-x0)**2/(2*sig**2)) # 定义曲率函数 def curvature(x, y): dy = np.gradient(y, x) ddy = np.gradient(dy, x) k = np.abs(ddy) / (1 + dy**2)**1.5 return k # 定义参数和数组 x1 = np.linspace(-2, 40, 10) x2 = np.linspace(-2, 40, 100) sig = 1 w = 1 y_rec = np.zeros_like(x2) curv_list = [] # 计算曲率值 for xi in x2: y = y_rec.copy() for k, xk in enumerate(x1): y += w * gkernel(xi, xk, sig) curv = curvature(x2, y) curv_list.append(curv[0]) # 找到曲率值最大的四个点 idx_max = np.argsort(curv_list)[-10:] x_max = x2[idx_max] x_max_diff = np.diff(x_max) while np.any(x_max_diff < 2): idx = np.argmin(x_max_diff) x_max[idx+1] += 1 x_max_diff = np.diff(x_max) print("曲率最大的十个点的横坐标为:", x_max)
修改代码如下所示,可以找出区间[-2, 40]之间的曲率极大值点的横坐标:
import numpy as np
import matplotlib.pyplot as plt
# 定义高斯核函数
def gkernel(x, x0, sig):
return np.exp(-(x-x0)**2/(2*sig**2))
# 定义曲率函数
def curvature(x, y):
dy = np.gradient(y, x)
ddy = np.gradient(dy, x)
k = np.abs(ddy) / (1 + dy**2)**1.5
return k
# 定义参数和数组
x1 = np.linspace(-2, 40, 1000) # 增加采样点数
x2 = np.linspace(-2, 40, 100)
sig = 1
w = 1
y_rec = np.zeros_like(x2)
curv_list = []
# 计算曲率值
for xi in x2:
y = y_rec.copy()
for k, xk in enumerate(x1):
y += w * gkernel(xi, xk, sig)
curv = curvature(x2, y)
curv_list.append(curv[0])
# 找到曲率值极大的点
idx_max = np.where(np.diff(np.sign(curv_list)) == -2)[0] + 1
x_max = x2[idx_max]
print("区间[-2,40]之间的曲率极大值点的横坐标为:", x_max)
# 绘制曲率函数图像
plt.plot(x2, curv_list)
plt.xlabel('x')
plt.ylabel('Curvature')
plt.title('Curvature Function')
plt.show()
修改后的代码中,除了找曲率极大值点的方法,还增加了绘制曲率函数图像的代码。绘制曲率函数图像可以直观地观察到曲率的变化情况,方便对比和分析。
阅读全文