transformer图像生成
时间: 2023-08-20 17:14:18 浏览: 297
Swin Transformer 实现图像分类
5星 · 资源好评率100%
Transformer图像生成是指利用Transformer模型来生成图像的过程。目前有几种方法可以实现Transformer图像生成。首先是将Transformer应用于文本编码器,不改变生成图像的结构,例如使用BERT处理文本编码过程,然后将输出向量传入生成对抗网络(GAN)中\[1\]。第二种方法是保存GAN模型,仅替换生成图像时使用的卷积和池化过程,例如VitGAN(Visual Transformer)\[1\]。第三种方法是直接使用Transformer进行图像生成,不保留GAN的结构\[1\]。
然而,Transformer在图像生成中面临计算效率的问题。由于Transformer的结构参数通常以百万甚至亿级别,将其应用于图像生成任务会增加训练难度和硬件要求\[1\]。此外,目前的Visual Transformer模型仍然是将NLP中的Transformer结构套用到视觉任务中,并未对视觉数据进行专门设计\[1\]。未来,针对视觉特性设计更适配的Transformer模型可能会带来更好的性能提升\[1\]。
与传统的卷积神经网络(CNN)相比,Transformer的学习方式和能力有所不同。CNN通过堆叠卷积层来提取图像的局部和全局信息,而Transformer不假定从局部信息开始,可以直接获取全局信息,但学习难度更大\[1\]。然而,Transformer具有更强的学习长期依赖的能力,并且可以学习到类似CNN的感受野范式\[1\]。此外,CNN通常采用金字塔结构,而原始的Transformer或者Visual Transformer采用柱状结构\[1\]。
最近的研究表明,双向Transformer在图像生成方面具有潜力。MaskGIT是图像领域中第一篇使用双向Transformer的工作,相比单向自回归方法,在图像生成上更具合理性\[2\]。此外,一些基于最大似然的方法(如VAE和自回归模型)在多样性方面超过了GAN,而利用Transformer进行图像生成的方法在生成速度方面仍存在挑战\[3\]。
综上所述,Transformer图像生成是利用Transformer模型生成图像的过程。目前存在多种方法和挑战,但未来的研究可能会带来更好的性能和效率。
#### 引用[.reference_title]
- *1* [Transformer做文本生成图像的调查研究笔记](https://blog.csdn.net/air__Heaven/article/details/121612984)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^koosearch_v1,239^v3^insert_chatgpt"}} ] [.reference_item]
- *2* *3* [谷歌MaskGIT|双向Transformer,图像生成新范式!](https://blog.csdn.net/m0_37310036/article/details/122935309)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^koosearch_v1,239^v3^insert_chatgpt"}} ] [.reference_item]
[ .reference_list ]
阅读全文