无迹卡尔曼滤波和扩展卡尔曼滤波
时间: 2023-08-25 08:07:06 浏览: 162
无迹卡尔曼滤波——三维目标跟踪
5星 · 资源好评率100%
无迹卡尔曼滤波(Unscented Kalman Filter)和扩展卡尔曼滤波(Extended Kalman Filter)都是常用的非线性滤波算法,用于估计系统状态的滤波问题。
无迹卡尔曼滤波是对标准卡尔曼滤波的一种改进,主要应用于非线性系统。传统的卡尔曼滤波基于线性系统模型和高斯分布假设,而实际中很多系统是非线性的,此时无迹卡尔曼滤波可以更好地处理这种情况。它通过在状态传播和观测更新阶段引入一组所谓的“无迹变换”(Unscented Transformation)来近似非线性函数,从而获得更准确的状态估计。
扩展卡尔曼滤波也是一种常用于非线性系统的滤波算法。与无迹卡尔曼滤波类似,扩展卡尔曼滤波也是通过线性化非线性函数来近似系统模型。不同的是,扩展卡尔曼滤波通过使用一阶泰勒展开来近似非线性函数,然后将其嵌入到标准的卡尔曼滤波框架中。
总体而言,无迹卡尔曼滤波和扩展卡尔曼滤波都是解决非线性系统滤波问题的方法。它们通过适当的近似和线性化来处理非线性函数,以实现更准确的状态估计。具体选择哪种滤波算法取决于具体的应用场景和系统特性。
阅读全文