na = (len(anchors[0]) // 2) if isinstance(anchors, list) else anchors # number of anchors
时间: 2024-04-06 16:34:56 浏览: 64
这段代码的作用是计算 anchors 数组中包含的 anchor boxes 的数量。anchor box 是在目标检测任务中使用的一种预定义的边界框,用于在图像中定位目标。在这段代码中,如果 anchors 是一个列表,那么它将计算 anchors[0] 中包含的 anchor boxes 数量。anchors[0] 应该是一个二维数组,其中每一行代表一个 anchor box,每行有两个元素表示 anchor box 的宽度和高度。因此,len(anchors[0]) // 2 将计算出 anchor box 数量。如果 anchors 不是一个列表,而是一个整数,则该整数就是 anchor box 的数量。最终,na 变量将包含 anchor box 的数量。
相关问题
class Model(nn.Module): def init(self, cfg='yolov5s.yaml', ch=3, nc=None, anchors=None): # model, input channels, number of classes super().init() if isinstance(cfg, dict): self.yaml = cfg # model dict else: # is *.yaml import yaml # for torch hub self.yaml_file = Path(cfg).name with open(cfg) as f: self.yaml = yaml.safe_load(f) # model dict # Define model ch = self.yaml['ch'] = self.yaml.get('ch', ch) # input channels if nc and nc != self.yaml['nc']: LOGGER.info(f"Overriding model.yaml nc={self.yaml['nc']} with nc={nc}") self.yaml['nc'] = nc # override yaml value if anchors: LOGGER.info(f'Overriding model.yaml anchors with anchors={anchors}') self.yaml['anchors'] = round(anchors) # override yaml value self.model, self.save = parse_model(deepcopy(self.yaml), ch=[ch]) # model, savelist self.names = [str(i) for i in range(self.yaml['nc'])] # default names self.inplace = self.yaml.get('inplace', True)
这是一个使用 PyTorch 框架实现的 YOLOv5 模型,可以根据配置文件加载模型并对输入图像进行目标检测。其中,`init` 函数接受四个参数,分别是配置文件路径 `cfg`、输入图像通道数 `ch`、目标类别数 `nc` 和锚框信息 `anchors`。如果配置文件是一个字典,直接使用该字典初始化模型;否则,从配置文件中加载模型参数并初始化模型。在初始化过程中,还会根据输入参数更新模型配置。模型的前向传播过程在 `forward` 函数中实现。
class Model(nn.Module): def __init__(self, cfg='yolov5s.yaml', ch=3, nc=None, anchors=None): # model, input channels, number of classes super().__init__() if isinstance(cfg, dict): self.yaml = cfg # model dict else: # is *.yaml import yaml # for torch hub self.yaml_file = Path(cfg).name with open(cfg) as f: self.yaml = yaml.safe_load(f) # model dict # Define model ch = self.yaml['ch'] = self.yaml.get('ch', ch) # input channels if nc and nc != self.yaml['nc']: LOGGER.info(f"Overriding model.yaml nc={self.yaml['nc']} with nc={nc}") self.yaml['nc'] = nc # override yaml value if anchors: LOGGER.info(f'Overriding model.yaml anchors with anchors={anchors}') self.yaml['anchors'] = round(anchors) # override yaml value self.model, self.save = parse_model(deepcopy(self.yaml), ch=[ch]) # model, savelist self.names = [str(i) for i in range(self.yaml['nc'])] # default names self.inplace = self.yaml.get('inplace', True)
这是一个使用 PyTorch 框架实现的 YOLOv5 模型,用于目标检测任务。模型通过解析传入的配置文件来定义模型结构,并使用输入的参数来覆盖配置文件中的一些值,例如输入通道数、类别数和锚点等。模型定义了一个 `Model` 类,继承自 PyTorch 中的 `nn.Module` 类。在 `__init__` 方法中,模型首先判断传入的配置文件是字典类型还是 yaml 文件,然后解析配置文件中的值来定义模型结构。模型中的核心是 `parse_model` 函数,它会根据配置文件中的内容来构建网络模型,并返回模型和一个保存列表。模型的输出是目标的分类、位置和置信度等信息。
阅读全文