Seq2Seq预测交通流
时间: 2023-10-09 09:10:00 浏览: 164
Seq2Seq模型是一种序列到序列的生成对抗网络模型,用于预测城市的多步时空人群流量。该模型将城市范围内的人群流量数据视为连续时间内的“图像帧”,通过生成对抗学习的方式,基于以前的预测生成未来的“帧”序列,从而实现对多步时空人群流量的准确预测。此外,为了考虑外部因素的影响,模型还提出了一个外部因素门模块(EC-Gate),用于学习区域范围内外部因素的特征表示。
SeqST-GAN模型的提出主要解决了人群流量数据时空联系的非线性以及外部因素的影响,使得多步时空人群流量预测更加准确。实验结果表明,SeqST-GAN相较于现有的模型在纽约的两个大型人群流量数据集上有显著的预测性能提升。
相关问题
transformer预测交通流量
以下是基于Transformer模型预测交通流量的步骤:
1. 定义输入特征和目标:
```python
# 历史交通流序列
history_traffic_flow = ...
# 当前交通流序列
current_traffic_flow = ...
# 目标:预测未来F个时间步的交通流
future_traffic_flow = ...
```
2. 构建Transformer模型:
```python
import tensorflow as tf
from tensorflow import keras
from tensorflow.keras import layers
# 定义Transformer编码器层
class TransformerEncoder(layers.Layer):
def __init__(self, num_layers, d_model, num_heads, dff, input_vocab_size, maximum_position_encoding, rate=0.1):
super(TransformerEncoder, self).__init__()
self.d_model = d_model
self.num_layers = num_layers
self.embedding = layers.Embedding(input_vocab_size, d_model)
self.pos_encoding = positional_encoding(maximum_position_encoding, self.d_model)
self.enc_layers = [EncoderLayer(d_model, num_heads, dff, rate) for _ in range(num_layers)]
self.dropout = layers.Dropout(rate)
def call(self, x, training, mask):
seq_len = tf.shape(x)[1]
x = self.embedding(x)
x *= tf.math.sqrt(tf.cast(self.d_model, tf.float32))
x += self.pos_encoding[:, :seq_len, :]
x = self.dropout(x, training=training)
for i in range(self.num_layers):
x = self.enc_layers[i](x, training, mask)
return x
# 定义Transformer解码器层
class TransformerDecoder(layers.Layer):
# 与Encoder类似,省略具体实现
# 定义Transformer模型
class Transformer(tf.keras.Model):
def __init__(self, num_layers, d_model, num_heads, dff, input_vocab_size, target_vocab_size, pe_input, pe_target, rate=0.1):
super(Transformer, self).__init__()
self.encoder = TransformerEncoder(num_layers, d_model, num_heads, dff, input_vocab_size, pe_input, rate)
self.decoder = TransformerDecoder(num_layers, d_model, num_heads, dff, target_vocab_size, pe_target, rate)
self.final_layer = layers.Dense(target_vocab_size)
def call(self, inp, tar, training, enc_padding_mask, look_ahead_mask, dec_padding_mask):
enc_output = self.encoder(inp, training, enc_padding_mask)
dec_output = self.decoder(tar, enc_output, training, look_ahead_mask, dec_padding_mask)
final_output = self.final_layer(dec_output)
return final_output
```
3. 训练Transformer模型:
```python
# 定义损失函数
loss_object = tf.keras.losses.MeanSquaredError()
# 定义学习率和优化器
learning_rate = CustomSchedule(d_model)
optimizer = tf.keras.optimizers.Adam(learning_rate, beta_1=0.9, beta_2=0.98, epsilon=1e-9)
# 定义评估指标
train_loss = tf.keras.metrics.Mean(name='train_loss')
# 单步训练
def train_step(inp, tar):
with tf.GradientTape() as tape:
predictions = transformer(inp, tar, True, None, None, None)
loss = loss_function(tar, predictions)
gradients = tape.gradient(loss, transformer.trainable_variables)
optimizer.apply_gradients(zip(gradients, transformer.trainable_variables))
train_loss(loss)
# 完整训练过程
for epoch in range(EPOCHS):
for (batch, (inp, tar)) in enumerate(dataset):
train_step(inp, tar)
```
4. 使用Transformer模型进行交通流量预测:
```python
# 使用训练好的模型进行预测
def evaluate(inp_sentence):
start_token = [tokenizer_pt.vocab_size]
end_token = [tokenizer_pt.vocab_size + 1]
inp_sentence = start_token + tokenizer_pt.encode(inp_sentence) + end_token
encoder_input = tf.expand_dims(inp_sentence, 0)
decoder_input = [tokenizer_en.vocab_size]
output = tf.expand_dims(decoder_input, 0)
for i in range(MAX_LENGTH):
enc_padding_mask, combined_mask, dec_padding_mask = create_masks(encoder_input, output)
predictions = transformer(encoder_input, output, False, enc_padding_mask, combined_mask, dec_padding_mask)
predictions = predictions[:, -1:, :]
predicted_id = tf.cast(tf.argmax(predictions, axis=-1), tf.int32)
if predicted_id == tokenizer_en.vocab_size + 1:
return tf.squeeze(output, axis=0)
output = tf.concat([output, predicted_id], axis=-1)
return tf.squeeze(output, axis=0)
```
阅读全文