PSO-logistic多分类python
时间: 2023-07-25 11:24:32 浏览: 213
PSO(粒子群优化算法)可以应用于Logistic回归的参数优化,以提高模型的性能。在Python中,可以使用pyswarms库中的PSO算法来实现。下面是一个简单的示例代码:
```python
from sklearn.datasets import load_iris
from sklearn.linear_model import LogisticRegression
from sklearn.model_selection import train_test_split
import numpy as np
import pyswarms as ps
# 加载数据集
iris = load_iris()
X = iris.data
y = iris.target
# 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
# 定义适应度函数
def f_per_particle(m, alpha):
"""
计算每个粒子的适应度函数值
"""
total_features = X_train.shape[1]
index_features = [i for i in range(total_features) if m[i] == 1]
if len(index_features) == 0:
return 100
x_subset = X_train[:, index_features]
clf = LogisticRegression(penalty='l2', C=alpha, solver='lbfgs', max_iter=100, multi_class='ovr', random_state=42)
clf.fit(x_subset, y_train)
return 1 - clf.score(X_test[:, index_features], y_test)
# 定义参数优化问题
opt = ps.discrete.binary.BinaryPSO(n_particles=30, dimensions=X_train.shape[1], options={'c1': 0.5, 'c2': 0.3, 'w':0.9})
# 运行优化
cost, pos = opt.optimize(f_per_particle, print_step=100, iters=1000, verbose=2)
# 确定选择的特征
index_features = [i for i in range(X_train.shape[1]) if pos[i] == 1]
# 训练模型
clf = LogisticRegression(penalty='l2', C=1.0, solver='lbfgs', max_iter=100, multi_class='ovr', random_state=42)
clf.fit(X_train[:, index_features], y_train)
# 预测测试集
y_pred = clf.predict(X_test[:, index_features])
# 计算准确率
accuracy = clf.score(X_test[:, index_features], y_test)
print("Accuracy:", accuracy)
```
在这个示例中,我们首先定义了一个适应度函数f_per_particle,它将每个粒子的二进制特征向量转换为适当的特征集,然后使用LogisticRegression模型拟合训练集并计算测试集上的准确率。然后,我们使用pyswarms库中的BinaryPSO算法来优化适应度函数,找到最佳的特征子集。最后,我们使用训练集中的最佳特征子集训练LogisticRegression模型,并在测试集上进行预测和准确率计算。
阅读全文