% 构建目标变量 b = zeros(size(X, 1), 1);为什么这一步开始,b为0?

时间: 2024-04-19 11:29:30 浏览: 4
在线性回归中,目标变量(也称为响应变量或因变量)是我们希望拟合的数据。在拟合三维空间中的直线时,我们可以选择目标变量为全零向量。 在代码中,`zeros(size(X, 1), 1)` 创建了一个大小为 `(n, 1)` 的全零向量,其中 `n` 是直线上的点的数量。这样设置目标变量 `b` 的值为零的意思是我们希望拟合的直线通过这些点,即满足 `ax + by + cz + d = 0` 中的等式。 通过使用最小二乘法,我们可以找到使得拟合的直线与给定数据点最接近的解,即找到合适的系数 `(a, b, c, d)` 来表示拟合的直线方程。
相关问题

b = zeros(size(X, 1), 1);这步是什么意思

在线性回归中,我们需要构建一个目标变量(也称为响应变量或因变量),该变量与设计矩阵 `A` 中的自变量对应。在拟合三维空间中的直线时,自变量是直线上的点的坐标,而目标变量可以选择为全零向量。 在代码中,`zeros(size(X, 1), 1)` 创建了一个大小为 `(n, 1)` 的全零向量,其中 `n` 是直线上的点的数量。这个向量表示我们的目标是使得拟合的直线通过这些点,即使得 `ax + by + cz + d = 0` 中的等式成立。通过这样设置目标变量,我们可以使用最小二乘法来找到最佳的直线拟合。 在实际应用中,如果有一些观测到的响应变量值,我们也可以使用这些观测值作为目标变量,并将问题转化为带有噪声的最小二乘问题。在这种情况下,`b` 向量将包含观测到的响应变量值。

clc;clear;close all % 读入音频文件 [y, Fs] = audioread('fadongji3500_zhujiashi.wav'); % 设置参数 N = 1024; % 帧长 M = 512; % 帧移 L = 4; % 阵元数量 mu = 0.01; % 步长 max_iter = 100; % 最大迭代次数 % 初始化变量 w = zeros(NL, 1); % 滤波器系数 P = eye(NL); % 误差协方差矩阵 % 分帧处理 y_frame = buffer(y, N, N-M, 'nodelay'); y_frame = y_frame(:, 1:end-1); y_frame = y_frame .* repmat(hamming(N), 1, size(y_frame, 2)); % 多通道主动降噪 for i = 1:size(y_frame, 2) x = y_frame(:, i); % 当前帧 % 构建阵列输出 X = zeros(NL, 1); for j = 1:L X((j-1)N+1:jN) = x; end y_hat = w'X; % 预测输出 e = x-y_hat; % 计算误差 P = (1/mu)(P-(PXX'P)/(mu+X'PX)); % 更新误差协方差矩阵 w = w+PXe'; % 更新滤波器系数 end % 输出降噪后的音频文件 y_denoised = filter(w, 1, y); audiowrite('output.wav', y_denoised, Fs);优化此程序,使本程序顺利运行

此程序有一些错误,需要进行修改才能顺利运行。下面是对程序的优化: 1. 修改 NL 的计算:将 (j-1)N+1:jN 修改为 (j-1)*N+1:j*N。 2. 修改更新误差协方差矩阵 P 的公式:将除数 mu 放到分母外面。 3. 修改更新滤波器系数 w 的公式:将 e' 修改为 e。 4. 修改变量名:将 y_frame 修改为 yFrames,将 y_denoised 修改为 yDenoised。 修改后的程序如下所示: ```matlab clc; clear; close all; % 读入音频文件 [y, Fs] = audioread('fadongji3500_zhujiashi.wav'); % 设置参数 N = 1024; % 帧长 M = 512; % 帧移 L = 4; % 阵元数量 mu = 0.01; % 步长 max_iter = 100; % 最大迭代次数 % 初始化变量 NL = N * L; w = zeros(NL, 1); % 滤波器系数 P = eye(NL); % 误差协方差矩阵 % 分帧处理 yFrames = buffer(y, N, N-M, 'nodelay'); yFrames = yFrames(:, 1:end-1); yFrames = yFrames .* repmat(hamming(N), 1, size(yFrames, 2)); % 多通道主动降噪 for i = 1:size(yFrames, 2) x = yFrames(:, i); % 当前帧 % 构建阵列输出 X = zeros(NL, 1); for j = 1:L X((j-1)*N+1:j*N) = x; end y_hat = w' * X; % 预测输出 e = x - y_hat; % 计算误差 P = (1/mu) * (P - (P * X * X' * P) / (mu + X' * P * X)); % 更新误差协方差矩阵 w = w + P * X * e; % 更新滤波器系数 end % 输出降噪后的音频文件 yDenoised = filter(w, 1, y); audiowrite('output.wav', yDenoised, Fs); ```

相关推荐

帮我把这俩段代码结合一下,以方便直接运行% 设置节点数和测试数据 numNodes = [20, 30, 40, 50, 60, 70, 80, 90]; numTests = 100; % 每个节点数运行的测试次数 % 初始化结果记录变量 runtimeCentrality = zeros(length(numNodes), numTests); runtimeSIR = zeros(length(numNodes), numTests); accuracyCentrality = zeros(length(numNodes), numTests); accuracySIR = zeros(length(numNodes), numTests); % 循环运行测试 for i = 1:length(numNodes) for j = 1:numTests % 生成随机测试数据 network = generateRandomNetwork(numNodes(i)); % 使用介数中心算法进行关键节点检测 tic; centralityResult = computeCentrality(network); runtimeCentrality(i, j) = toc; % 使用SIR模型进行关键节点检测 tic; SIRResult = computeSIR(network); runtimeSIR(i, j) = toc; % 计算准确率 accuracyCentrality(i, j) = computeAccuracy(centralityResult, trueCriticalNodes); accuracySIR(i, j) = computeAccuracy(SIRResult, trueCriticalNodes); end end % 计算平均准确率和运行时间 avgAccuracyCentrality = mean(accuracyCentrality, 2); avgAccuracySIR = mean(accuracySIR, 2); avgRuntimeCentrality = mean(runtimeCentrality, 2); avgRuntimeSIR = mean(runtimeSIR, 2); % 绘制准确率折线图 figure; plot(numNodes, avgAccuracyCentrality, 'o-', 'LineWidth', 2, 'MarkerSize', 8); hold on; plot(numNodes, avgAccuracySIR, 'o-', 'LineWidth', 2, 'MarkerSize', 8); xlabel('节点数'); ylabel('准确率'); legend('介数中心算法', 'SIR模型'); grid on;和function network = generateRandomNetwork(numNodes) % 生成 numNodes x numNodes 大小的随机邻接矩阵 adjacencyMatrix = rand(numNodes) < 0.5; adjacencyMatrix = triu(adjacencyMatrix, 1); % 保留上三角形部分 % 构建网络模型 network = graph(adjacencyMatrix); end

data1=xlsread('附件1.xlsx'); Value_supt=100;%两商品支持度阙值 data=zeros(4624,999); %0-1矩阵 for i=1:4624 for j=1:72 if data1(i,j)==0 continue; end data(i,data1(i,j))=1; end end %C1——满足置信度的组合 B1=zeros(999,2); for i=1:999 B1(i,1)=i; end for i=1:4624 for j=1:999 if data(i,j)==1 B1(j,2)=B1(j,2)+1; end end end t=1; for i=1:999 if B1(i,2)>Value_supt C1(t,:)=B1(i,:); t=t+1; end end %B2——满足置信度的单价商品所构成的两件商品组合 n=size(C1,1);n2=0;t=1;n3=n*(n-1)/2; B2=zeros(n3,3); for j1=1:n-1 for j2=j1+1:n for i=1:4718 if data(i,C1(j1,1))==1&data(i,C1(j2,1))==1 n2=n2+1; end end B2(t,1)=C1(j1,1); B2(t,2)=C1(j2,1); B2(t,3)=n2; n2=0;t=t+1; end end %C2——满足置信度的2件商品组合 a=find(B2(:,3)>Value_supt);n4=size(a,1); C2=zeros(n4,3);t=1; for i=1:n3 if B2(i,3)>Value_supt C2(t,1)=B2(i,1); C2(t,2)=B2(i,2); C2(t,3)=B2(i,3); t=t+1; end end %B3——满足置信度的2件商品组合成的3件商品 b=unique(C2(:,[1,2])); n=size(b,1);n1=size(C2,1);n2=0;t=1;n3=n1*n; B3=zeros(n3,4); for j1=1:n1 for j2=1:n for i=1:4624 if data(i,C2(j1,1))==1&&data(i,C2(j1,2))==1&&data(i,b(j2))==1&&b(j2)~=C2(j1,1)&&b(j2)~ =C2(j1,2) n2=n2+1; B3(t,1)=C2(j1,1); B3(t,2)=C2(j1,2); B3(t,3)=b(j2); end end B3(t,4)=n2; n2=0;t=t+1; end end %C3——满足置信度的3件商品 a=find(B3(:,4)>Value_supt);n4=size(a,1); C3=zeros(n4,4);t=1; for i=1:n3 if B3(i,4)>Value_supt C3(t,1)=B3(i,1); C3(t,2)=B3(i,2); C3(t,3)=B3(i,3); C3(t,4)=B3(i,4); t=t+1; end end %B4——满足置信度的3件商品组合成的4件商品 b4=unique(C3(:,[1,2,3])); n=size(b4,1);n1=size(C3,1);n2=0;t=1;n3=n1*n; B4=zeros(n3,5); for j1=1:n1 for j2=1:n for i=1:4624 if data(i,C3(j1,1))==1&&data(i,C3(j1,2))==1&&data(i,C3(j1,3))&&data(i,b4(j2))==1&&b4(j 2)~=C3(j1,1)&&b4(j2)~=C3(j1,2)&&b4(j2)~=C3(j1,3) n2=n2+1; B4(t,1)=C3(j1,1); B4(t,2)=C3(j1,2); B4(t,3)=C3(j1,3); B4(t,4)=b4(j2); end end B4(t,5)=n2; n2=0;t=t+1; end end %C4——满足置信度的4件商品 a=find(B4(:,5)>Value_supt);n4=size(a,1); C4=zeros(n4,5);t=1; for i=1:n3 if B4(i,5)>Value_supt C4(t,1)=B4(i,1); C4(t,2)=B4(i,2); C4(t,3)=B4(i,3); C4(t,4)=B4(i,4); C4(t,5)=B4(i,5); t=t+1; end end

% 读取图像 I = imread('errorlena1.jpg'); % 获取图像的灰度共生矩阵特征 [state, per_state] = get_stats(I); % 提取对比度、能量、相关性和熵 contrast = per_state(1); energy = per_state(2); correlation = per_state(3); entropy_value = per_state(5); % 计算复杂度 complexity = entropy_value + contrast - energy - correlation; % 计算K值(向上取整) K = ceil((size(I, 1) + size(I, 2)) * complexity / 2); % 显示结果 disp('图像的灰度共生矩阵特征和K值:'); disp(['对比度: ', num2str(contrast)]); disp(['能量: ', num2str(energy)]); disp(['相关性: ', num2str(correlation)]); disp(['熵: ', num2str(entropy_value)]); disp(['复杂度: ', num2str(complexity)]); disp(['K值: ', num2str(K)]); figure, imshow(I); numSegments = K; % 指定的分割块数 s = floor(sqrt(size(I, 1) * size(I, 2) / numSegments)); % 计算每个块的大小 errTh = 10^-2; wDs = 0.5^2; Label = SLIC(I, s, errTh, wDs); % 显示轮廓 marker = zeros(size(Label)); [m, n] = size(Label); for i = 1:m for j = 1:n top = Label(max(1, i-1), j); bottom = Label(min(m, i+1), j); left = Label(i, max(1, j-1)); right = Label(i, min(n, j+1)); if ~(top == bottom && bottom == left && left == right) marker(i, j) = 1; end end end figure, imshow(marker); I_gray = rgb2gray(I); % 将图像转换为灰度图像 I_single = single(I_gray); % 转换为单精度浮点图像 % 提取SIFT特征点 [f, d] = vl_sift(I_single); % 显示提取的SIFT特征点 figure, imshow(I); hold on; h = vl_plotframe(f); set(h, 'color', 'y', 'linewidth', 1); hold off; I2 = I; for i = 1:m for j = 1:n if marker(i, j) == 1 I2(i, j, :) = 0; end end end figure, imshow(I2);在我的这个代码中加入kd树和bbf算法的特征点匹配

最新推荐

recommend-type

node-v0.10.31-sunos-x86.tar.gz

Node.js,简称Node,是一个开源且跨平台的JavaScript运行时环境,它允许在浏览器外运行JavaScript代码。Node.js于2009年由Ryan Dahl创立,旨在创建高性能的Web服务器和网络应用程序。它基于Google Chrome的V8 JavaScript引擎,可以在Windows、Linux、Unix、Mac OS X等操作系统上运行。 Node.js的特点之一是事件驱动和非阻塞I/O模型,这使得它非常适合处理大量并发连接,从而在构建实时应用程序如在线游戏、聊天应用以及实时通讯服务时表现卓越。此外,Node.js使用了模块化的架构,通过npm(Node package manager,Node包管理器),社区成员可以共享和复用代码,极大地促进了Node.js生态系统的发展和扩张。 Node.js不仅用于服务器端开发。随着技术的发展,它也被用于构建工具链、开发桌面应用程序、物联网设备等。Node.js能够处理文件系统、操作数据库、处理网络请求等,因此,开发者可以用JavaScript编写全栈应用程序,这一点大大提高了开发效率和便捷性。 在实践中,许多大型企业和组织已经采用Node.js作为其Web应用程序的开发平台,如Netflix、PayPal和Walmart等。它们利用Node.js提高了应用性能,简化了开发流程,并且能更快地响应市场需求。
recommend-type

node-v0.10.44-linux-x86.tar.gz

Node.js,简称Node,是一个开源且跨平台的JavaScript运行时环境,它允许在浏览器外运行JavaScript代码。Node.js于2009年由Ryan Dahl创立,旨在创建高性能的Web服务器和网络应用程序。它基于Google Chrome的V8 JavaScript引擎,可以在Windows、Linux、Unix、Mac OS X等操作系统上运行。 Node.js的特点之一是事件驱动和非阻塞I/O模型,这使得它非常适合处理大量并发连接,从而在构建实时应用程序如在线游戏、聊天应用以及实时通讯服务时表现卓越。此外,Node.js使用了模块化的架构,通过npm(Node package manager,Node包管理器),社区成员可以共享和复用代码,极大地促进了Node.js生态系统的发展和扩张。 Node.js不仅用于服务器端开发。随着技术的发展,它也被用于构建工具链、开发桌面应用程序、物联网设备等。Node.js能够处理文件系统、操作数据库、处理网络请求等,因此,开发者可以用JavaScript编写全栈应用程序,这一点大大提高了开发效率和便捷性。 在实践中,许多大型企业和组织已经采用Node.js作为其Web应用程序的开发平台,如Netflix、PayPal和Walmart等。它们利用Node.js提高了应用性能,简化了开发流程,并且能更快地响应市场需求。
recommend-type

30KW三相PFC充电桩充电模块项目开发设计方案CCS源码AD原理图bom测试报告

30KW三相PFC充电桩项目开发设计方案CCS源码AD原理图bom测试报告
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

实现实时数据湖架构:Kafka与Hive集成

![实现实时数据湖架构:Kafka与Hive集成](https://img-blog.csdnimg.cn/img_convert/10eb2e6972b3b6086286fc64c0b3ee41.jpeg) # 1. 实时数据湖架构概述** 实时数据湖是一种现代数据管理架构,它允许企业以低延迟的方式收集、存储和处理大量数据。与传统数据仓库不同,实时数据湖不依赖于预先定义的模式,而是采用灵活的架构,可以处理各种数据类型和格式。这种架构为企业提供了以下优势: - **实时洞察:**实时数据湖允许企业访问最新的数据,从而做出更明智的决策。 - **数据民主化:**实时数据湖使各种利益相关者都可
recommend-type

SPDK_NVMF_DISCOVERY_NQN是什么 有什么作用

SPDK_NVMF_DISCOVERY_NQN 是 SPDK (Storage Performance Development Kit) 中用于查询 NVMf (Non-Volatile Memory express over Fabrics) 存储设备名称的协议。NVMf 是一种基于网络的存储协议,可用于连接远程非易失性内存存储器。 SPDK_NVMF_DISCOVERY_NQN 的作用是让存储应用程序能够通过 SPDK 查询 NVMf 存储设备的名称,以便能够访问这些存储设备。通过查询 NVMf 存储设备名称,存储应用程序可以获取必要的信息,例如存储设备的IP地址、端口号、名称等,以便能
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

实现实时监控告警系统:Kafka与Grafana整合

![实现实时监控告警系统:Kafka与Grafana整合](https://imgconvert.csdnimg.cn/aHR0cHM6Ly9tbWJpei5xcGljLmNuL21tYml6X2pwZy9BVldpY3ladXVDbEZpY1pLWmw2bUVaWXFUcEdLT1VDdkxRSmQxZXB5R1lxaWNlUjA2c0hFek5Qc3FyRktudFF1VDMxQVl3QTRXV2lhSWFRMEFRc0I1cW1ZOGcvNjQw?x-oss-process=image/format,png) # 1.1 Kafka集群架构 Kafka集群由多个称为代理的服务器组成,这