帮忙优化一下这段代码i=0:0.1:45 ; i0=i*pi/180; r1=70*pi/180; m1=195; K=1500; L=3025; qwz=acot(cot(i0)-K/L); %期望值 P1=sin(r1+i0); Q1=(K/m1)*(2*cos(r1)-cos(r1+i0))-cos(2*r1); R1=sqrt((K/m1)^2+1-2*(K/m1)*cos(r1+i0)); yhq=real(r1-asin(P1./R1)-acos(Q1./R1)); %实际值 plot(i,qwz,'b-'); grid on; hold on; %画在同一张图上 plot(i,yhq,'r+'); hold on; xlabel('外轮转角'); ylabel('内轮转角'); legend('理论转角','实际转角'); title('理论转角VS实际转角');
时间: 2024-02-21 13:00:10 浏览: 204
这段代码中有一些重复计算的部分,可以将它们提前计算出来,以提高代码的效率。此外,可以考虑使用矩阵运算来避免使用循环。
以下是优化后的代码:
```matlab
i = 0:0.1:45;
i0 = i * pi / 180;
r1 = 70 * pi / 180;
m1 = 195;
K = 1500;
L = 3025;
cot_i0 = cot(i0); % 提前计算 cot(i0)
P1 = sin(r1 + i0);
cos_r1 = cos(r1);
cos_r1_i0 = cos(r1 + i0);
Q1 = (K/m1)*(2*cos_r1-cos_r1_i0)-cos(2*r1);
K_div_m1 = K/m1;
R1 = sqrt(K_div_m1^2+1-2*K_div_m1*cos_r1_i0);
ywq = r1 - asin(P1./R1) - acos(Q1./R1);
plot(i, acot(cot_i0-K/L), 'b-', i, real(ywq), 'r+');
grid on;
xlabel('外轮转角');
ylabel('内轮转角');
legend('理论转角', '实际转角');
title('理论转角 VS 实际转角');
```
这样,代码会更加简洁和高效。
相关问题
你是一名专业的算法大师,请帮我使用matlab编写代码求出电机1和电机2的最大转矩电流比(MTPA)曲线和最大转矩电压比(MTPV)曲线,计算不考虑饱和特性 已知:电机1参数分别如下:44kW PMSM:定子相电阻R=4m2定子链相绕组永磁磁链峰值;=0055Wb电机极对数p=4,转动惯量J=0.048kg·m,定子绕组相漏电感L=2pHd轴励磁电感L;=88pH,q轴励磁电感L=300pH,额定转速为 4000r/min,峰值转矩temax=210N·m。不考虑饱和特性。电机2参数分别如下:2100kW PMSM:定子相电阻R=83m定子链相绕组永磁磁链峰值=0.071Wb,电机极对数p=4,转动惯量J=0.1kgm,定子绕组相漏电感L=30uHd轴励磁电感L;=174uHq轴励磁电感 L=293pH,额定转速为4700r/min峰值转矩 temax256N·m
好的,根据您提供的电机参数,我可以帮您编写求解 MTPA 曲线和 MTPV 曲线的 Matlab 代码。代码如下:
```
% 电机1参数
P1 = 44e3; % 额定功率,单位:W
R1 = 4e-3; % 定子相电阻,单位:Ω
Ld1 = 88e-6; % d 轴励磁电感,单位:H
Lq1 = 300e-6; % q 轴励磁电感,单位:H
J1 = 0.048; % 转动惯量,单位:kg·m^2
p1 = 4; % 极对数
Flux1 = 0.055; % 定子链相绕组永磁磁链峰值,单位:Wb
N1 = 4000; % 额定转速,单位:rpm
Tmax1 = 210; % 峰值转矩,单位:N·m
% 电机2参数
P2 = 2100e3; % 额定功率,单位:W
R2 = 83e-3; % 定子相电阻,单位:Ω
Ld2 = 174e-6; % d 轴励磁电感,单位:H
Lq2 = 293e-6; % q 轴励磁电感,单位:H
J2 = 0.1; % 转动惯量,单位:kg·m^2
p2 = 4; % 极对数
Flux2 = 0.071; % 定子链相绕组永磁磁链峰值,单位:Wb
N2 = 4700; % 额定转速,单位:rpm
Tmax2 = 256; % 峰值转矩,单位:N·m
% 计算电机1的 MTPA 曲线
i1 = 0:0.01:1; % 电机1的电流比
w1 = N1 * pi / 30; % 电机1的角速度,单位:rad/s
T1 = 1.5 * p1 * Flux1 * i1 / w1; % 电机1的转矩,单位:N·m
Mtpa1 = Tmax1 * ones(size(i1)); % 电机1的最大转矩电流比
for k = 1:length(i1)
if T1(k) > Tmax1
Mtpa1(k) = i1(k) * Tmax1 / T1(k);
end
end
% 计算电机2的 MTPA 曲线
i2 = 0:0.01:1; % 电机2的电流比
w2 = N2 * pi / 30; % 电机2的角速度,单位:rad/s
T2 = 1.5 * p2 * Flux2 * i2 / w2; % 电机2的转矩,单位:N·m
Mtpa2 = Tmax2 * ones(size(i2)); % 电机2的最大转矩电流比
for k = 1:length(i2)
if T2(k) > Tmax2
Mtpa2(k) = i2(k) * Tmax2 / T2(k);
end
end
% 计算电机1的 MTPV 曲线
v1 = 0:0.01:1; % 电机1的电压比
Mtpv1 = Tmax1 * ones(size(v1)); % 电机1的最大转矩电压比
for k = 1:length(v1)
if v1(k) > sqrt(R1 / (Ld1 * w1))
Mtpv1(k) = sqrt((Tmax1 * sqrt(Ld1 / R1)) / (1.5 * p1 * Flux1 * w1)) / v1(k);
end
end
% 计算电机2的 MTPV 曲线
v2 = 0:0.01:1; % 电机2的电压比
Mtpv2 = Tmax2 * ones(size(v2)); % 电机2的最大转矩电压比
for k = 1:length(v2)
if v2(k) > sqrt(R2 / (Ld2 * w2))
Mtpv2(k) = sqrt((Tmax2 * sqrt(Ld2 / R2)) / (1.5 * p2 * Flux2 * w2)) / v2(k);
end
end
% 绘制 MTPA 曲线和 MTPV 曲线
figure;
subplot(2, 1, 1);
plot(i1, Mtpa1, 'r', i2, Mtpa2, 'b');
title('MTPA曲线');
xlabel('电流比');
ylabel('最大转矩电流比');
legend('电机1', '电机2');
subplot(2, 1, 2);
plot(v1, Mtpv1, 'r', v2, Mtpv2, 'b');
title('MTPV曲线');
xlabel('电压比');
ylabel('最大转矩电压比');
legend('电机1', '电机2');
```
这段代码会绘制出两个子图,分别是 MTPA 曲线和 MTPV 曲线,其中红色的是电机1的曲线,蓝色的是电机2的曲线。您可以根据需要自行修改代码中的参数和绘图方式。
帮我写WOA优化SVR的python代码
当然可以帮你编写WOA优化SVR的Python代码。下面是一个简单示例:
```python
import numpy as np
from sklearn.svm import SVR
from sklearn.datasets import make_regression
from sklearn.model_selection import train_test_split
from math import sin, pi
# Whale Optimization Algorithm (WOA) implementation
def woa_optimization(X, y, population_size, max_iterations):
num_features = X.shape[1]
num_samples = X.shape[0]
# Initialize whale population
population = np.random.uniform(-1, 1, (population_size, num_features))
# Initialize convergence curve
convergence_curve = np.zeros(max_iterations)
# Initialize best solution
best_solution = None
best_fitness = float('inf')
for iteration in range(max_iterations):
a = 2 - iteration * ((2) / max_iterations) # a decreases linearly from 2 to 0
for i in range(population_size):
r1 = np.random.random() # r1 is a random number in [0,1]
r2 = np.random.random() # r2 is a random number in [0,1]
A = 2 * a * r1 - a # Equation (2.3)
C = 2 * r2 # Equation (2.4)
# Update position of the current whale
D = np.abs(C * population[i] - population)
b = 1
x_rand = population[np.random.randint(population_size)]
# Equation (2.5)
D_2 = np.abs(b * x_rand - population)
new_position = np.zeros(num_features)
for j in range(num_features):
# Equation (2.7)
if D_2[j] >= D[j]:
new_position[j] = x_rand[j] - A * D_2[j]
else:
new_position[j] = population[i][j] - A * D[j]
# Boundary handling
new_position = np.clip(new_position, -1, 1)
# Update fitness of the current whale
new_fitness = svr_fitness(new_position, X, y)
# Update best solution
if new_fitness < best_fitness:
best_solution = new_position
best_fitness = new_fitness
# Update convergence curve
convergence_curve[iteration] = best_fitness
population = new_position
return best_solution, best_fitness, convergence_curve
# Fitness function
def svr_fitness(position, X, y):
svr = SVR()
svr.fit(X, y)
y_pred = svr.predict(X)
mse = np.mean((y - y_pred) ** 2)
return mse
# Generate a regression dataset
X, y = make_regression(n_samples=100, n_features=1, noise=0.1)
# Split the dataset into training and testing sets
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2)
# Perform WOA optimization on SVR
best_solution, best_fitness, convergence_curve = woa_optimization(X_train, y_train, population_size=10, max_iterations=100)
# Fit SVR with the best solution found
svr_best = SVR()
svr_best.fit(X_train, y_train)
y_pred_train = svr_best.predict(X_train)
y_pred_test = svr_best.predict(X_test)
# Print results
print("Best Solution:", best_solution)
print("Best Fitness:", best_fitness)
# Plot convergence curve
import matplotlib.pyplot as plt
plt.plot(convergence_curve)
plt.xlabel("Iteration")
plt.ylabel("Fitness")
plt.title("WOA Optimization Convergence")
plt.show()
```
在上述代码中,我们先定义了WOA优化算法的实现,然后使用SVR作为目标函数进行优化。代码中还包含了生成回归数据集、拆分数据集、以及绘制收敛曲线的部分。
这段代码可以帮助你完成WOA优化SVR的Python实现,你可以根据自己的需求进行修改和扩展。希望能对你有所帮助!
阅读全文
相关推荐















