figure, index=[1,I:-1:2];%为什么通道的对应顺序是这样的? for k=1:I%产生I路信号 %频域去噪 mf=fft(mhat(k,:)); thrd_mf=max(abs(mf))/2;%阈值设置 mf(abs(mf)<thrd_mf)=0; mhat(k,:)=ifft(mf);%还原时域信号 subplot(4,2,k);plot(t,I*real(mhat(index(k),:)),'.-', t,m(k,:),'ro-');legend('接收解调信号','原始发射信号');% pause()%虚部是cos end

时间: 2024-04-03 14:36:10 浏览: 19
这段代码中的通道对应顺序是 [1, I, -1, -(I-1), ..., -I+1]。这是因为在频域去噪时,信号的频域表示是对称的,即 $M_f(k)=M_f^*(-k)$,其中 $M_f(k)$ 是信号在频域中的表示,$M_f^*(-k)$ 是其共轭复数。因此,频域去噪时需要同时处理正频率和负频率,而且它们的处理方式是相同的,因此可以通过以下方式对信号进行处理:首先对正频率进行处理,然后将负频率的处理结果按照相反的顺序排列,即可得到最终的处理结果。
相关问题

分析以下这个代码clear all clc close all; data=load('PDWdata.txt');%序号、频率、脉冲宽度、TOA、PA %% t=data(:,4); t=sort(t); N=length(t); K=15000; taumin=0; taumax=1800; b=(taumax-taumin)/K; D=zeros(1,K); for i=1:K tauk(i)=(i-1/2)*(taumax-taumin)/K+taumin; end n=2; while n<=N m=n-1; while m>=1 tau=t(n)-t(m); if (tau>taumin)&&(tau<=taumax) for k=1:K if (tau>(tauk(k)-b/2))&&(tau<=(tauk(k)+b/2)) D(k)=D(k)+exp(2*pi*t(n)*1i/tau); end end elseif tau>taumax break else ; end m=m-1; end n=n+1; end D=abs(D); plot(tauk,D); [dd,index]=sort(D,'descend'); PRI=tauk(index(1:3));%确定前5个为有效的PRI值 PRI=round(PRI)%取整 %% F1=[]; F2=[]; F3=[]; n=2; while n<=N m=n-1; while m>=1 tau=t(n)-t(m); if tau==PRI(1) F1=[F1;[data(m,2) t(m)];[data(n,2) t(n)]]; end if tau==PRI(2) F2=[F2;[data(m,2) t(m)];[data(n,2) t(n)]]; end if tau==PRI(3) F3=[F3;[data(m,2) t(m)];[data(n,2) t(n)]]; end m=m-1; end n=n+1; end F1=unique(F1,'row','stable'); F2=unique(F2,'row','stable'); F3=unique(F3,'row','stable'); %% 雷达频率分布 F1(F1==0)=[]; F2(F2==0)=[]; F3(F3==0)=[]; figure; plot(F1(:,2),F1(:,1),'*'); figure; plot(F2(:,2),F2(:,1),'*'); figure; plot(F3(:,2),F3(:,1),'*');

这段代码主要是对雷达数据进行处理和分析,包括以下几个步骤: 1. 加载数据:通过load函数将PDWdata.txt文件中的数据读入到data矩阵中。 2. 排序时间戳:将data矩阵中的时间戳按照从小到大的顺序排序,存储到t向量中。 3. 初始化延迟时间tau和D矩阵:通过设定最小延迟时间taumin、最大延迟时间taumax和划分数目K,计算出每个划分区间的中心tau_k,存储到tauk向量中。初始化一个K行1列的零矩阵D,用于存储每个tau_k对应的D值。 4. 计算D值:遍历时间戳t向量中的每个时间戳t(n),在之前的时间戳t(m)中查找是否存在与t(n)的时间差在taumin和taumax之间的时间戳t(m)。如果存在,则根据tau_k所在的区间范围,计算并累加对应的D值。 5. 绘制D值图像:将D向量中的每个元素取绝对值,然后绘制成以tau_k为横坐标、D值为纵坐标的图像。 6. 确定有效的PRI值:根据D值的大小,确定前3个D值对应的tau_k值作为有效的PRI值。 7. 查找频率:遍历时间戳t向量中的每个时间戳t(n),在之前的时间戳t(m)中查找是否存在与t(n)的时间差等于有效的PRI值的时间戳t(m),如果存在,则将对应的频率和时间存储到F1、F2或F3矩阵中。 8. 绘制频率分布图像:将F1、F2和F3矩阵中的频率和时间数据分别绘制成散点图,用于分析雷达频率的分布情况。 需要注意的是,这段代码中的变量名和注释可能不够规范和清晰,可能会影响代码的可读性和可维护性。在实际开发中,应该尽可能使用规范的变量名和注释,提高代码的可读性和可维护性。

freq = data['类型'].split("-")[2].value_counts() plt.figure(figsize=(8, 8)) plt.pie(freq.values, labels=freq.index, autopct='%1.1f%%') plt.title("某列数据出现频次饼图") plt.show()代码有什么错误和需要改进的地方

这段代码可能会出现以下问题: 1. `data['类型']` 中是否一定会包含 `"-"` 字符串,如果没有该字符串,会导致 `split` 方法报错。 2. `split` 方法返回的是一个列表,所以需要指定要获取的元素,比如 `split("-")[2]` 表示获取分割后的第三个元素,但如果分割后的列表长度小于 3,会导致索引错误。 3. `value_counts()` 方法只能用于 Pandas 的 Series 类型,如果 `data['类型']` 不是 Series 类型,会导致方法调用失败。 4. `freq.index` 和 `freq.values` 的顺序可能不一致,导致标签和值对应错误。 5. 饼图的颜色没有进行指定,如果数据较多,可能会出现颜色重复的问题。 改进的地方包括: 1. 可以在使用 `split` 方法前先判断字符串中是否存在 `"-"`。 2. 应该先将字符串转换为 Series 类型,再调用 `value_counts()` 方法。 3. 可以在 `pie` 方法中添加 `colors` 参数,指定每个标签对应的颜色。 4. 可以添加异常处理机制,防止出现错误导致程序崩溃。 改进后的代码示例: ```python import pandas as pd import matplotlib.pyplot as plt try: freq = pd.Series(data['类型'].split("-")).value_counts() plt.figure(figsize=(8, 8)) colors = plt.cm.Set3([i for i in range(len(freq))]) plt.pie(freq.values, labels=freq.index, colors=colors, autopct='%1.1f%%') plt.title("某列数据出现频次饼图") plt.show() except Exception as e: print("出现错误:", e) ```

相关推荐

# 划分区间 bins = [0,1,2,3,4,5,10,15,20,25,30,35,40,45,50,60,70,80,90,100,1220] data = data_forecast_is_stk_bs_rpt_zq_befor_big['本年比上一年归母倍数'] # 统计每个柱子的数据 hist, edges = pd.cut(data, bins=bins, right=False, include_lowest=True, retbins=True) counts = hist.value_counts() # 按照 hist 的顺序重新排序 counts counts = counts.reindex(hist.cat.categories) # 按照 bins 的顺序给每个柱子指定标签 labels = counts.index.astype(str) fig, ax = plt.subplots(figsize=(18, 6)) # 绘制柱形图 plt.bar(labels, counts) # 添加数据标签 for i, v in enumerate(counts.values): plt.text(i, v, str(v), ha='center', va='bottom') # 设置图表标题和坐标轴标签 plt.title('准确数据-本年小于前一年归母倍数') plt.xlabel('Range') plt.ylabel('Count') # 显示图表 plt.show() # 划分区间 bins1 = [0,1,2,3,4,5,10,15,20,25,30,35,40,45,50,60,70,80,90,100,1220] data1 = data_forecast_is_stk_bs_rpt_cw_befor_big['本年比上一年归母倍数'] # 统计每个柱子的数据 hist1, edges1 = pd.cut(data1, bins=bins1, right=False, include_lowest=True, retbins=True) counts1 = hist1.value_counts() # 按照 hist 的顺序重新排序 counts counts1 = counts1.reindex(hist.cat.categories) # 按照 bins 的顺序给每个柱子指定标签 labels1 = counts1.index.astype(str) fig1, ax1 = plt.subplots(figsize=(18, 6)) # 绘制柱形图 plt.bar(labels, counts) # 添加数据标签 for i, v in enumerate(counts.values): plt.text(i, v, str(v), ha='center', va='bottom') # 设置图表标题和坐标轴标签 plt.title('准确数据-本年小于前一年归母倍数') plt.xlabel('Range') plt.ylabel('Count') # 显示图表 plt.show() 把这2个柱形图做成1个对比柱形图

最新推荐

recommend-type

山东省PLC与控制技术模拟试题.docx

plc
recommend-type

Мартин -- Байесовский анализ на Python -- 2020.pdf

Мартин -- Байесовский анализ на Python -- 2020
recommend-type

2022-2028全球与中国X射线探测器市场现状及未来发展趋势.docx

2022-2028全球与中国X射线探测器市场现状及未来发展趋势.docx
recommend-type

安卓版的c语言编译器IDE输出内容到文本文件代码正确例题.txt

安卓版的c语言编译器IDE输出内容到文本文件代码正确例题
recommend-type

电力电子系统建模与控制入门

"该资源是关于电力电子系统建模及控制的课程介绍,包含了课程的基本信息、教材与参考书目,以及课程的主要内容和学习要求。" 电力电子系统建模及控制是电力工程领域的一个重要分支,涉及到多学科的交叉应用,如功率变换技术、电工电子技术和自动控制理论。这门课程主要讲解电力电子系统的动态模型建立方法和控制系统设计,旨在培养学生的建模和控制能力。 课程安排在每周二的第1、2节课,上课地点位于东12教401室。教材采用了徐德鸿编著的《电力电子系统建模及控制》,同时推荐了几本参考书,包括朱桂萍的《电力电子电路的计算机仿真》、Jai P. Agrawal的《Powerelectronicsystems theory and design》以及Robert W. Erickson的《Fundamentals of Power Electronics》。 课程内容涵盖了从绪论到具体电力电子变换器的建模与控制,如DC/DC变换器的动态建模、电流断续模式下的建模、电流峰值控制,以及反馈控制设计。还包括三相功率变换器的动态模型、空间矢量调制技术、逆变器的建模与控制,以及DC/DC和逆变器并联系统的动态模型和均流控制。学习这门课程的学生被要求事先预习,并尝试对书本内容进行仿真模拟,以加深理解。 电力电子技术在20世纪的众多科技成果中扮演了关键角色,广泛应用于各个领域,如电气化、汽车、通信、国防等。课程通过列举各种电力电子装置的应用实例,如直流开关电源、逆变电源、静止无功补偿装置等,强调了其在有功电源、无功电源和传动装置中的重要地位,进一步凸显了电力电子系统建模与控制技术的实用性。 学习这门课程,学生将深入理解电力电子系统的内部工作机制,掌握动态模型建立的方法,以及如何设计有效的控制系统,为实际工程应用打下坚实基础。通过仿真练习,学生可以增强解决实际问题的能力,从而在未来的工程实践中更好地应用电力电子技术。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

图像写入的陷阱:imwrite函数的潜在风险和规避策略,规避图像写入风险,保障数据安全

![图像写入的陷阱:imwrite函数的潜在风险和规避策略,规避图像写入风险,保障数据安全](https://static-aliyun-doc.oss-accelerate.aliyuncs.com/assets/img/zh-CN/2275688951/p86862.png) # 1. 图像写入的基本原理与陷阱 图像写入是计算机视觉和图像处理中一项基本操作,它将图像数据从内存保存到文件中。图像写入过程涉及将图像数据转换为特定文件格式,并将其写入磁盘。 在图像写入过程中,存在一些潜在陷阱,可能会导致写入失败或图像质量下降。这些陷阱包括: - **数据类型不匹配:**图像数据可能与目标文
recommend-type

protobuf-5.27.2 交叉编译

protobuf(Protocol Buffers)是一个由Google开发的轻量级、高效的序列化数据格式,用于在各种语言之间传输结构化的数据。版本5.27.2是一个较新的稳定版本,支持跨平台编译,使得可以在不同的架构和操作系统上构建和使用protobuf库。 交叉编译是指在一个平台上(通常为开发机)编译生成目标平台的可执行文件或库。对于protobuf的交叉编译,通常需要按照以下步骤操作: 1. 安装必要的工具:在源码目录下,你需要安装适合你的目标平台的C++编译器和相关工具链。 2. 配置Makefile或CMakeLists.txt:在protobuf的源码目录中,通常有一个CMa
recommend-type

SQL数据库基础入门:发展历程与关键概念

本文档深入介绍了SQL数据库的基础知识,首先从数据库的定义出发,强调其作为数据管理工具的重要性,减轻了开发人员的数据处理负担。数据库的核心概念是"万物皆关系",即使在面向对象编程中也有明显区分。文档讲述了数据库的发展历程,从早期的层次化和网状数据库到关系型数据库的兴起,如Oracle的里程碑式论文和拉里·埃里森推动的关系数据库商业化。Oracle的成功带动了全球范围内的数据库竞争,最终催生了SQL这一通用的数据库操作语言,统一了标准,使得关系型数据库成为主流。 接着,文档详细解释了数据库系统的构成,包括数据库本身(存储相关数据的集合)、数据库管理系统(DBMS,负责数据管理和操作的软件),以及数据库管理员(DBA,负责维护和管理整个系统)和用户应用程序(如Microsoft的SSMS)。这些组成部分协同工作,确保数据的有效管理和高效处理。 数据库系统的基本要求包括数据的独立性,即数据和程序的解耦,有助于快速开发和降低成本;减少冗余数据,提高数据共享性,以提高效率;以及系统的稳定性和安全性。学习SQL时,要注意不同数据库软件可能存在的差异,但核心语言SQL的学习是通用的,后续再根据具体产品学习特异性。 本文档提供了一个全面的框架,涵盖了SQL数据库从基础概念、发展历程、系统架构到基本要求的方方面面,对于初学者和数据库管理员来说是一份宝贵的参考资料。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依