用ID3算法生成的决策树,进行后剪枝,后剪枝的代码怎么写

时间: 2023-05-21 09:05:36 浏览: 31
以下是一个简单的后剪枝代码示例: ```python def prune(tree, X_val, y_val): """ Prune the decision tree using the validation set X_val, y_val """ if tree.is_leaf: return # Recursively prune the left and right subtrees prune(tree.left, X_val, y_val) prune(tree.right, X_val, y_val) # Check if pruning the subtree resulted in better accuracy if not tree.left.is_leaf or not tree.right.is_leaf: pred = tree.predict(X_val) acc_before = accuracy_score(y_val, pred) # Prune the subtree by converting it to a leaf node with majority class label tree.left = None tree.right = None tree.is_leaf = True tree.pred = np.argmax(np.bincount(y_val)) # Check accuracy again after pruning pred = tree.predict(X_val) acc_after = accuracy_score(y_val, pred) # If accuracy decreased after pruning, revert the subtree back to unpruned if acc_after < acc_before: tree.is_leaf = False left_indices = X_val[:, tree.feature] < tree.threshold right_indices = X_val[:, tree.feature] >= tree.threshold tree.left = DecisionTree(X_val[left_indices, :], y_val[left_indices]) tree.right = DecisionTree(X_val[right_indices, :], y_val[right_indices]) tree.left.split() tree.right.split() # Example usage tree = DecisionTree(X_train, y_train) tree.split() prune(tree, X_val, y_val) ```

相关推荐

### 回答1: 剪枝是决策树算法中一个重要的步骤,它的目的是防止过拟合。CART(Classification and Regression Trees)分类决策树剪枝主要有两种方法:预剪枝和后剪枝。 预剪枝是在构建决策树的过程中,提前停止某些分支的生长,以防止过拟合。常见的预剪枝策略有限制树的最大深度、限制叶子节点的最小样例数、限制信息增益的最小值等。预剪枝策略可以有效地降低决策树的复杂度,但它也会使得决策树的精度降低。 后剪枝是在构建完整个决策树之后,再对决策树进行简化。常见的后剪枝方法有:REP(Reduced Error Pruning)、PEP(Pessimistic Error Pruning)等。后剪枝策略可以通过删除一些叶子节点来降低决策树的复杂度,同时还能保证决策树的精度。 下面是一个使用后剪枝的 CART分类决策树剪枝的代码及详解: python def prune(tree, testData): ''' 后剪枝函数 :param tree: 待剪枝的树 :param testData: 剪枝所需的测试数据集 :return: 剪枝后的树 ''' # 如果测试数据集为空,则直接返回该树的叶子节点的均值 if len(testData) == 0: return getMean(tree) # 如果当前节点是一个子树,则对该子树进行剪枝 if (isinstance(tree, dict)): # 对训练数据进行划分 leftSet, rightSet = binSplitDataSet(testData, tree['spInd'], tree['spVal']) # 对左子树进行剪枝 if (isinstance(tree['left'], dict)): tree['left'] = prune(tree['left'], leftSet) # 对右子树进行剪枝 if (isinstance(tree['right'], dict)): tree['right'] = prune(tree['right'], rightSet) # 如果当前节点的两个子节点都是叶子节点,则考虑合并这两个叶子节点 if not isinstance(tree['left'], dict) and not isinstance(tree['right'], dict): # 计算合并前的误差 errorNoMerge = sum(np.power(leftSet[:, -1] - tree['left'], 2)) + \ sum(np.power(rightSet[:, -1] - tree['right'], 2)) # 计算合并后的误差 treeMean = (tree['left'] + tree['right']) / 2.0 errorMerge = sum(np.power(testData[:, -1] - treeMean, 2)) # 如果合并后的误差小于合并前的误差,则进行合并 if errorMerge < errorNoMerge: return treeMean return tree 该函数的输入参数为待剪枝的树以及用于剪枝的测试数据集。函数的主要流程如下: 1. 如果测试数据集为空,则直接返回该树的叶子节点的均值; 2. 如果当前节点是一个子树,则对该子树进行剪枝,分别对左右子树进行剪枝; 3. 如果当前节点的两个子节点都是叶子节点,则考虑合并这两个叶子节点; 4. 如果合并后的误差小于合并前的误差,则进行合并; 5. 最后返回剪枝后的树。 剪枝过程中最重要的是如何判断是否进行剪枝,并且如何进行剪枝。在上面的代码中,我们通过计算合并前和合并后的误差,来判断是否进行剪枝。如果合并后的误差小于合并前的误差,则进行剪枝。 需要注意的是,在剪枝过程中,我们需要对整个决策树进行遍历,因此该过程非常耗时。为了提高剪枝的效率,我们可以先对整个决策树进行建立,然后再对其进行剪枝。这样可以大大减少计算量,同时也可以避免在建立决策树的过程中出现剪枝误差。 ### 回答2: 决策树剪枝是为了解决决策树过拟合的问题,减小模型复杂度,提高泛化能力。CART算法(Classification and Regression Tree)是一种常用的决策树算法。 CART算法在进行剪枝时,采用了后剪枝的方法。具体代码如下: 1. 数据准备:首先需要准备训练数据和测试数据。将数据集按照一定的比例划分成训练集和测试集,通常训练集占总数据集的70-80%。 2. 构建决策树:利用训练数据构建初始的决策树。对于CART算法来说,树的每个非叶子节点会有两个分支,根据Gini指数或信息增益来选择最优的划分属性。 3. 后剪枝:对构建好的决策树进行后剪枝操作。后剪枝的步骤如下: (1)利用测试集评估从根节点到每个叶子节点的分类准确率,保存在错误率数组中。 (2)递归地从树的底层开始,自底向上地计算每个节点的代价函数。代价函数定义为:路径上节点的错误率加上一个参数乘以路径的复杂度。 (3)计算每个非叶子节点的剪枝前与剪枝后的代价函数之差,选取差值最小的节点作为剪枝节点。 (4)使用剪枝节点的父节点的多数投票法更新剪枝节点,将其变为叶子节点。 (5)重复步骤2-4,直到无法再剪枝为止。 4. 模型评估:使用剪枝后的决策树对测试集进行预测,并计算预测准确率。根据准确率来评估模型的性能和泛化能力。 决策树剪枝的代码实现比较复杂,需要涉及到模型的构建、剪枝、以及模型的评估等环节。以上是对决策树剪枝代码及详解的简要概述,具体实现过程还需要根据具体的编程语言和库进行相应的代码编写和调试。
### 回答1: 基于ID3算法的决策树分类器实现步骤如下: 1. 收集数据集,包括特征和分类标签。 2. 计算数据集的熵,用于衡量数据集的无序程度。 3. 针对每个特征,计算信息增益,选择信息增益最大的特征作为节点。 4. 将数据集按照选择的特征分成不同的子集,递归地构建决策树。 5. 当所有特征都被使用或者数据集已经完全分类时,停止递归。 6. 对新数据进行分类,根据决策树的规则进行分类。 需要注意的是,ID3算法有可能会出现过拟合的情况,因此可以采用剪枝等方法来提高决策树的泛化能力。 ### 回答2: ID3算法是一种经典的分类算法,可以通过计算经验熵来构建决策树。在实现基于ID3算法的决策树分类器时,需要进行以下步骤。 1. 数据准备 首先需要准备好训练数据。数据应该包括若干个样本,每个样本包含若干个特征和一个类别标签。 2. 计算信息熵 使用信息熵来衡量数据的混乱程度。信息熵的公式为:$H = -\sum_{i=1}^k p_i \log_2 p_i$,其中$p_i$是某个类别在所有样本中出现的概率。 3. 计算信息增益 信息增益衡量某个特征对分类的贡献程度。信息增益的公式为:$Gain(A) = H(D) - \sum_{v=1}^V \frac{|D_v|}{|D|}H(D_v)$,其中$A$是某个特征,$D$是所有样本,$D_v$是某个特征取某个值时的样本。计算每个特征的信息增益,找到信息增益最大的特征。 4. 构建决策树 将信息增益最大的特征作为当前节点的分裂特征。将所有样本按照该特征的取值分成若干个子集。对每个子集递归调用上述步骤,直到无法分割或者达到某个条件时停止递归。 5. 预测 对于新的数据样本,根据决策树进行分类。从根节点开始,根据各个特征的取值不断向下遍历,直到到达叶子节点,叶子节点的类别即为预测结果。 以上是基于ID3算法实现决策树分类器的主要步骤。在实际应用中,还需要考虑如何处理缺失数据、如何剪枝优化等问题。此外,也可以使用其他决策树算法,如C4.5和CART等。 ### 回答3: —————————————分割线—————————————— 决策树是机器学习领域中重要的算法之一,它可以将数据集合分成可辨识别的不同类别,适用于二分类和多分类问题。而ID3算法是其中被广泛应用的一种决策树算法,它的主要核心是通过信息增益来分裂数据集合,得到高准确率。 实现基于ID3算法的决策树分类器的主要思路可以概括为: 1. 选取一个最优的特征,将数据集划分为若干个子集,使得节点上的样本分类纯度更高。通常采用信息增益或信息增益比来选择最优特征。 2. 不断调用递归函数,从根节点开始构建决策树。 3. 对于每个子集,如果该集合中的样本已经被完全划分为同一类别,或者集合为空,则对应的节点标记为叶子节点,并标注该节点的分类类别。 4. 否则,继续选择最优特征,将该子集继续划分为更小的子集。 实现ID3算法的代码框架可以参考以下伪代码: function ID3(DataSet) if (DataSet.samples all belong to same class): return a leaf node with the class as label else if(DataSet.features are empty): return a leaf node with the majority class as label else bestFeat = choose the feature with maximum information gain tree = a new decision tree with root node as bestFeat divide DataSet into subsets according to bestFeat for each subset add a branch to tree with ID3(subset) end for end if return tree end function 其中,信息增益的计算方式为: $Gain(D, A) = Ent(D) - \sum_{v=1}^V \frac{|D^v|}{|D|} Ent(D^v)$ 其中,$D$为数据样本集合,$A$为要进行划分的特征集合,$D^v$为集合$D$划分后属于$A$中特征值为$v$的子集合,$Ent$为样本不确定性度量函数。 通过ID3算法实现的决策树分类器在处理张量数据时存在着一些困难之处,这时,可以将高维张量数据投影到低维度空间中使用ID3算法进行分类。这样可以降低特征数量对分类器效果的影响,从而提高计算效率和精度。 在实际应用中,ID3算法的效果受到很多因素的影响,如数据集质量、特征选择和树的剪枝方法等。因此,在使用中需要对其进行不断的优化和改进,以获得更好的分类效果。
### 回答1: 以下是使用MATLAB实现ID3决策树算法的步骤: 1. 准备数据集,包括输入特征和类别标签。 2. 计算每个特征的信息增益,选取信息增益最大的特征作为当前节点的划分特征。 3. 根据划分特征将数据集划分为多个子集。 4. 对每个子集递归执行步骤2-3,直到所有子集的类别标签相同或无法再划分为止。 以下是MATLAB代码示例: matlab % 准备数据集 data = [1, 1, 1; 1, 1, 0; 1, 0, 1; 0, 1, 1; 0, 1, 0; 0, 0, 1; 0, 0, 0]; label = [1, 1, 1, 0, 0, 0, 0]; % 定义信息熵计算函数 entropy = @(p) -sum(p.*log2(p)); % 定义信息增益计算函数 gain = @(d, l, f) entropy(histc(d(:, f), 0:1)) - sum(arrayfun(@(k) sum(l(d(:, f)==k))/sum(d(:, f)==k)*entropy(histc(l(d(:, f)==k), 0:1)), 0:1)); % 定义ID3决策树构建函数 function tree = id3(data, label, features) % 如果所有标签相同,则返回叶子节点 if all(label==label(1)) tree = struct('op', '', 'kids', [], 'class', label(1)); return end % 如果没有特征可以划分,则返回叶子节点,并选择出现最多的标签 if isempty(features) tree = struct('op', '', 'kids', [], 'class', mode(label)); return end % 计算每个特征的信息增益 gains = arrayfun(@(f) gain(data, label, f), features); [~, best] = max(gains); best_feature = features(best); % 根据最佳特征划分数据集 left_data = data(data(:, best_feature)==0, :); left_label = label(data(:, best_feature)==0); right_data = data(data(:, best_feature)==1, :); right_label = label(data(:, best_feature)==1); % 递归构建子树 if isempty(left_data) tree.kids{1} = struct('op', '', 'kids', [], 'class', mode(label)); else tree.kids{1} = id3(left_data, left_label, features(features~=best_feature)); end if isempty(right_data) tree.kids{2} = struct('op', '', 'kids', [], 'class', mode(label)); else tree.kids{2} = id3(right_data, right_label, features(features~=best_feature)); end tree.op = sprintf('x%d==1', best_feature); tree.class = []; end % 构建决策树 tree = id3(data, label, 1:size(data, 2)); % 预测新数据 new_data = [1, 0, 0]; node = tree; while isempty(node.class) if new_data(find(strcmp(node.op, arrayfun(@(k) k.op, node.kids, 'UniformOutput', false)))) == 0 node = node.kids{1}; else node = node.kids{2}; end end predicted_class = node.class; % 打印决策树 print_tree(tree, ''); function print_tree(tree, prefix) if isempty(tree.class) fprintf('%s%s\n', prefix, tree.op); print_tree(tree.kids{1}, [prefix '| ']); print_tree(tree.kids{2}, [prefix '| ']); else fprintf('%s%d\n', prefix, tree.class); end end 注意:以上代码仅作为示例,实际应用中可能需要进一步优化和修改。 ### 回答2: ID3决策树算法是一种用于特征选择的方法,主要用于分类问题。在使用MATLAB实现ID3算法时,可以按照以下步骤进行: 1. 数据预处理:将原始数据集导入MATLAB,并进行数据清洗和数据预处理工作,如去除缺失值、处理异常值等。 2. 构建决策树:根据ID3算法的特征选择准则(信息增益),计算每个特征的信息增益,并选择具有最大信息增益的特征作为当前节点的划分属性。然后根据该属性的取值将训练数据集划分为子数据集,对每个子数据集递归地执行相同的步骤,直到满足终止条件为止。 3. 终止条件:决策树的终止条件可根据实际需求进行设定,例如当所有样本属于同一类别时,停止划分;或者当无法再选择合适的属性进行划分时,停止划分。 4. 树的剪枝:为了防止决策树过拟合,可以使用剪枝技术对构建好的决策树进行剪枝处理。MATLAB提供了相应的剪枝函数,可以根据不同的准则进行剪枝操作。 5. 测试和评估:使用测试数据集对构建好的决策树进行测试,并计算分类准确率、精确率、召回率等评估指标,以评估模型的性能。 需要注意的是,MATLAB中并没有直接提供ID3算法的实现函数,但可以根据ID3算法的原理自行编写算法代码,结合MATLAB提供的矩阵运算和编程功能进行实现。同时,MATLAB还提供了其他的决策树算法实现,如C4.5和CART,可以根据实际情况选择合适的算法进行使用。 ### 回答3: ID3(Iterative Dichotomiser 3)是一种决策树算法,用于进行分类任务。它通过对数据集的属性进行分割来构建决策树,使得在每个节点上都选择最优的属性作为划分准则。 在MATLAB中,我们可以使用内置的一些函数来实现ID3算法。首先,需要将样本数据整理成一个矩阵X和一个向量y,其中X是N×M的矩阵,N是样本数,M是属性数,y是长度为N的向量,表示每个样本的类别。 接下来,可以使用MATLAB的决策树工具箱中的fitctree函数来构建ID3决策树模型。这个函数的输入参数包括样本矩阵X和类别向量y,以及其他一些选项参数,例如'PredictorNames'指定属性名称,'CategoricalPredictors'指定哪些属性是离散的。 使用fitctree函数得到决策树模型后,可以使用view函数来查看决策树的可视化结果。 要对新的样本进行分类预测,可以使用predict函数,将新的样本矩阵作为输入,返回预测的类别。 此外,还可以使用一些其他的函数和工具来评估决策树模型的性能,例如计算分类准确率和绘制混淆矩阵等。 总结来说,MATLAB提供了方便的工具和函数来实现ID3决策树算法。通过合理使用这些函数和工具,我们可以构建、训练并使用决策树模型进行分类任务。
好的,我会依次回答你的问题。 1. 决策树算法原理和框架 决策树是一种基于树结构的机器学习算法,可以用于分类和回归问题。其核心思想是通过对样本数据的分析,选择最优的特征进行分类,从而构建一棵树形的分类模型。 决策树算法的框架包括以下几个步骤: 1.1 准备样本数据 首先需要准备带有标签的样本数据,即每个样本都有一个标签,用于区分不同类别。可以从公共数据集中下载或者自己构造样本数据。 1.2 特征选择 在构建决策树时,需要选择最优的特征来进行分类。常用的特征选择方法包括信息增益、信息增益比、基尼指数等。 1.3 树的生成 通过递归的方式,将样本数据划分为不同的节点,生成一棵树形结构。在每个节点上,选择最优的特征进行分类,将样本数据划分为不同的子集,并生成新的节点。 1.4 树的剪枝 为了避免过拟合,需要对生成的决策树进行剪枝。常用的剪枝方法包括预剪枝和后剪枝。 1.5 预测样本类别 使用测试集中的样本来测试模型的性能,得到预测的类别。 2. 决策树学习算法的特征选择、树的生成和树的剪枝 特征选择、树的生成和树的剪枝是决策树学习算法的关键步骤。 2.1 特征选择 特征选择的目的是选择最优的特征来进行分类。常用的特征选择方法包括信息增益、信息增益比、基尼指数等。 2.2 树的生成 树的生成是通过递归的方式,将样本数据划分为不同的节点,生成一棵树形结构。在每个节点上,选择最优的特征进行分类,将样本数据划分为不同的子集,并生成新的节点。 常用的树的生成算法包括ID3、C4.5、CART等。 2.3 树的剪枝 树的剪枝是为了避免过拟合,需要对生成的决策树进行剪枝。常用的剪枝方法包括预剪枝和后剪枝。 3. 根据不同的数据类型,选择不同的决策树算法 根据不同的数据类型,可以选择不同的决策树算法。如果数据是离散型的,可以使用ID3或C4.5算法;如果数据是连续型的,可以使用CART算法。 4. 针对特定应用场景及数据,能应用决策树算法解决实际问题 决策树算法可以应用于分类和回归问题。在实际应用中,需要根据具体的问题选择合适的决策树算法,并对数据进行预处理和特征选择,以提高模型的准确率和泛化能力。 5. 实现决策树分类的可视化 在Python中,可以使用graphviz库来实现决策树分类的可视化。具体的代码如下: python from sklearn.tree import DecisionTreeClassifier from sklearn.datasets import load_iris from sklearn import tree import graphviz # 加载iris数据集 iris = load_iris() X = iris.data y = iris.target # 构建决策树模型 clf = DecisionTreeClassifier() clf.fit(X, y) # 可视化决策树 dot_data = tree.export_graphviz(clf, out_file=None, feature_names=iris.feature_names, class_names=iris.target_names, filled=True, rounded=True, special_characters=True) graph = graphviz.Source(dot_data) graph.view() 其中,X表示样本的特征向量,y表示样本的标签,clf表示训练好的决策树分类器。使用tree.export_graphviz()函数将决策树导出为DOT格式,然后使用graphviz.Source()函数将其可视化。
### 回答1: java // 输入: 决策树根节点root // 输出: 剪枝后的决策树根节点 public TreeNode pruneTree(TreeNode root) { if (root == null) return null; // 先剪枝左子树 root.left = pruneTree(root.left); // 再剪枝右子树 root.right = pruneTree(root.right); // 如果左右子树都为空,并且当前节点的值为0 if (root.left == null && root.right == null && root.val == 0) { return null; } return root; } 这段代码是一个递归的剪枝算法。它遍历整棵决策树,对于每个节点,先剪枝左子树,再剪枝右子树。如果当前节点的左右子树都为空且节点的值为0,那么就将该节点删除。最后返回剪枝后的根节点。 ### 回答2: 剪枝算法(Pruning algorithm)是一种在决策树或搜索算法中用于减少计算量的技术。下面是一个简单的剪枝算法的Java代码示例: java public class PruningAlgorithm { public static double pruning(double[][] data, double threshold) { return pruningHelper(data, threshold, 0, 0); } public static double pruningHelper(double[][] data, double threshold, int index, double currentSum) { if (currentSum > threshold) { return currentSum; } if (index == data.length) { return currentSum; } double includeCurrent = pruningHelper(data, threshold, index + 1, currentSum + data[index][0]); double excludeCurrent = pruningHelper(data, threshold, index + 1, currentSum); return Math.max(includeCurrent, excludeCurrent); } public static void main(String[] args) { double[][] data = { {1.2}, {2.1}, {0.8}, {1.5} }; double threshold = 4.0; double result = pruning(data, threshold); System.out.println("Max sum: " + result); } } 上述代码实现了一个简单的剪枝算法,并通过一个二维数组data和一个阈值threshold进行测试。pruningHelper方法用于递归计算所有可能的组合,并将当前和大于阈值的情况进行剪枝处理,从而减少无效的计算。最终得到的结果是能够在满足阈值限制的条件下,选择最大的和。 以上是一个简单的剪枝算法的Java实现示例,实际使用中可能需要根据具体的需求进行适当的修改。 ### 回答3: 剪枝算法(Pruning algorithm)是一种用于优化搜索过程的算法,它通过剪去一些无关的分支,从而减少搜索空间,提高搜索效率。下面是一个使用剪枝算法的Java代码示例: java public class PruningAlgorithm { // 定义一个全局变量,用于保存找到的最优解 private static int maxSum; public static void main(String[] args) { int[] nums = {1, 2, 3, 4, 5}; maxSum = 0; pruning(nums, 0, 0); System.out.println("最大和为:" + maxSum); } // 剪枝算法函数 public static void pruning(int[] nums, int index, int sum) { // 当搜索到最后一个元素时,比较当前和与最优解,并更新最优解 if (index == nums.length) { maxSum = Math.max(maxSum, sum); return; } // 假设选择当前元素 sum += nums[index]; // 当前和如果大于最优解,则继续搜索下一个元素 if (sum <= maxSum) { pruning(nums, index + 1, sum); } // 回溯,撤销选择 sum -= nums[index]; // 假设不选择当前元素 // 当前和如果大于最优解,则继续搜索下一个元素 if (sum <= maxSum) { pruning(nums, index + 1, sum); } } } 以上代码实现了一个用于计算数组元素最大和的剪枝算法。在每一层搜索时,根据当前和与最优解的关系来选择是否继续搜索。如果当前和大于最优解,则直接剪枝,不再继续搜索。通过这种方式,可以减少不必要的搜索操作,提高搜索效率。
好的,您提出了以下几个问题: 1.决策树算法的原理和框架是什么? 2.决策树学习算法的特征选择、树的生成和树的剪枝是什么? 3.如何根据不同的数据类型选择不同的决策树算法? 4.如何针对特定应用场景及数据,应用决策树算法解决实际问题? 5.如何实现决策树分类的可视化? 我将逐一回答您的问题: 1. 决策树算法的原理和框架 决策树是一种基于树结构的机器学习算法,用于分类和回归分析。其原理是通过对数据进行分析,利用信息熵等方法,得出最优的特征选择,建立树形结构,实现对数据的分类。决策树算法的框架主要分为三步:特征选择、树的生成和树的剪枝。 2. 决策树学习算法的特征选择、树的生成和树的剪枝 特征选择是决策树算法中最重要的一步,其目的是在候选的特征集合中选择最佳的特征。在决策树的生成过程中,根据特征选择的结果,从根节点开始,递归地生成子节点,最终形成决策树。树的剪枝是为了避免过拟合,将决策树的一些分支或叶子结点删除,形成更简单的决策树。 3. 如何根据不同的数据类型选择不同的决策树算法? 根据不同的数据类型,可以选择不同的决策树算法。例如,针对数值型数据,可以选择回归树算法;针对离散型数据,可以选择分类树算法;针对混合型数据,可以选择混合树算法。 4. 如何针对特定应用场景及数据,应用决策树算法解决实际问题? 在使用决策树算法解决实际问题时,需要根据具体的应用场景和数据特点进行选择。首先需要对数据进行预处理和特征选择,然后根据数据类型选择合适的决策树算法,最后根据实际需求进行模型训练和评估。 5. 如何实现决策树分类的可视化? 决策树分类的可视化可以通过可视化工具来实现,例如Graphviz等。将决策树模型转换成Graphviz格式的文件,然后使用Graphviz软件进行可视化展示。也可以使用Python等编程语言的可视化库,例如Matplotlib和Seaborn等,对决策树模型进行可视化展示。

最新推荐

决策树剪枝算法的python实现方法详解

主要介绍了决策树剪枝算法的python实现方法,结合实例形式较为详细的分析了决策树剪枝算法的概念、原理并结合实例形式分析了Python相关实现技巧,需要的朋友可以参考下

电影网站系统.zip

电影网站系统

电子表格常用函数公式.pdf

电子表格常用函数公式.pdf

8086 汇编语言子程序程序设计.pdf

8086 汇编语言子程序程序设计.pdf

1H412022吊具种类与选用要求.pdf

1H412022吊具种类与选用要求.pdf

代码随想录最新第三版-最强八股文

这份PDF就是最强⼋股⽂! 1. C++ C++基础、C++ STL、C++泛型编程、C++11新特性、《Effective STL》 2. Java Java基础、Java内存模型、Java面向对象、Java集合体系、接口、Lambda表达式、类加载机制、内部类、代理类、Java并发、JVM、Java后端编译、Spring 3. Go defer底层原理、goroutine、select实现机制 4. 算法学习 数组、链表、回溯算法、贪心算法、动态规划、二叉树、排序算法、数据结构 5. 计算机基础 操作系统、数据库、计算机网络、设计模式、Linux、计算机系统 6. 前端学习 浏览器、JavaScript、CSS、HTML、React、VUE 7. 面经分享 字节、美团Java面、百度、京东、暑期实习...... 8. 编程常识 9. 问答精华 10.总结与经验分享 ......

事件摄像机的异步事件处理方法及快速目标识别

934}{基于图的异步事件处理的快速目标识别Yijin Li,Han Zhou,Bangbang Yang,Ye Zhang,Zhaopeng Cui,Hujun Bao,GuofengZhang*浙江大学CAD CG国家重点实验室†摘要与传统摄像机不同,事件摄像机捕获异步事件流,其中每个事件编码像素位置、触发时间和亮度变化的极性。在本文中,我们介绍了一种新的基于图的框架事件摄像机,即SlideGCN。与最近一些使用事件组作为输入的基于图的方法不同,我们的方法可以有效地逐个事件处理数据,解锁事件数据的低延迟特性,同时仍然在内部保持图的结构。为了快速构建图,我们开发了一个半径搜索算法,该算法更好地利用了事件云的部分正则结构,而不是基于k-d树的通用方法。实验表明,我们的方法降低了计算复杂度高达100倍,相对于当前的基于图的方法,同时保持最先进的性能上的对象识别。此外,我们验证了我们的方�

下半年软件开发工作计划应该分哪几个模块

通常来说,软件开发工作可以分为以下几个模块: 1. 需求分析:确定软件的功能、特性和用户需求,以及开发的目标和约束条件。 2. 设计阶段:根据需求分析的结果,制定软件的架构、模块和接口设计,确定开发所需的技术和工具。 3. 编码实现:根据设计文档和开发计划,实现软件的各项功能和模块,编写测试用例和文档。 4. 测试阶段:对软件进行各种测试,包括单元测试、集成测试、功能测试、性能测试、安全测试等,确保软件的质量和稳定性。 5. 发布和部署:将软件打包发布,并进行部署和安装,确保用户可以方便地使用软件。 6. 维护和更新:对软件进行维护和更新,修复漏洞和Bug,添加新的特性和功能,保证

数据结构1800试题.pdf

你还在苦苦寻找数据结构的题目吗?这里刚刚上传了一份数据结构共1800道试题,轻松解决期末挂科的难题。不信?你下载看看,这里是纯题目,你下载了再来私信我答案。按数据结构教材分章节,每一章节都有选择题、或有判断题、填空题、算法设计题及应用题,题型丰富多样,共五种类型题目。本学期已过去一半,相信你数据结构叶已经学得差不多了,是时候拿题来练练手了,如果你考研,更需要这份1800道题来巩固自己的基础及攻克重点难点。现在下载,不早不晚,越往后拖,越到后面,你身边的人就越卷,甚至卷得达到你无法想象的程度。我也是曾经遇到过这样的人,学习,练题,就要趁现在,不然到时你都不知道要刷数据结构题好还是高数、工数、大英,或是算法题?学完理论要及时巩固知识内容才是王道!记住!!!下载了来要答案(v:zywcv1220)。

开集域自适应方法及其在靶点发现中的应用

9322基于开集域自适应的新靶点发现Taotao Jing< $,Hongfu LiuXiang,and Zhengming Ding<$†美国杜兰大学计算机科学系‡美国布兰代斯大学Michtom计算机科学学院网址:tjing@tulane.edu,hongfuliu@brandeis.edu,网址:www.example.com,zding1@tulane.edu摘要开集域自适应算法(OSDA)认为目标域包含了在外部源域中未观察到的新类别的样本不幸的是,现有的OSDA方法总是忽略了看不见的类别的信息的需求,并简单地将它们识别为“未知”集合而没有进一步的这促使我们通过探索底层结构和恢复其不可解释的语义属性来更具体地理解未知类别。在本文中,我们提出了一种新的框架,以准确地识别目标领域中的可见类别,并有效地恢复未见过的类别的语义属性具体而言,结构保持部分对齐开发,通过域不变的特征学习识别看到的基于视觉图的属性传播是为了通过视觉语义映射将可见属�