用ID3算法生成的决策树,进行后剪枝,后剪枝的代码怎么写
时间: 2023-05-21 14:05:36 浏览: 156
以下是一个简单的后剪枝代码示例:
```python
def prune(tree, X_val, y_val):
"""
Prune the decision tree using the validation set X_val, y_val
"""
if tree.is_leaf:
return
# Recursively prune the left and right subtrees
prune(tree.left, X_val, y_val)
prune(tree.right, X_val, y_val)
# Check if pruning the subtree resulted in better accuracy
if not tree.left.is_leaf or not tree.right.is_leaf:
pred = tree.predict(X_val)
acc_before = accuracy_score(y_val, pred)
# Prune the subtree by converting it to a leaf node with majority class label
tree.left = None
tree.right = None
tree.is_leaf = True
tree.pred = np.argmax(np.bincount(y_val))
# Check accuracy again after pruning
pred = tree.predict(X_val)
acc_after = accuracy_score(y_val, pred)
# If accuracy decreased after pruning, revert the subtree back to unpruned
if acc_after < acc_before:
tree.is_leaf = False
left_indices = X_val[:, tree.feature] < tree.threshold
right_indices = X_val[:, tree.feature] >= tree.threshold
tree.left = DecisionTree(X_val[left_indices, :], y_val[left_indices])
tree.right = DecisionTree(X_val[right_indices, :], y_val[right_indices])
tree.left.split()
tree.right.split()
# Example usage
tree = DecisionTree(X_train, y_train)
tree.split()
prune(tree, X_val, y_val)
```
阅读全文