决策树ID3算法后剪枝
时间: 2023-05-20 14:03:28 浏览: 197
决策树ID3算法后剪枝是一种用于决策树的优化方法,它可以通过剪枝来减少决策树的复杂度,提高模型的泛化能力。具体实现方法是在决策树构建完成后,对树进行剪枝,将一些不必要的分支或叶子节点删除,从而达到简化模型的目的。
相关问题
能给出决策树ID3算法的后剪枝部分代码吗
当然可以,以下是决策树ID3算法的后剪枝部分代码:
```python
def prune(tree, validation_set):
if not tree.children:
return tree
# Recursively prune children
for child in tree.children:
prune(child, validation_set)
# Check if pruning this node improves accuracy on validation set
before_pruning = accuracy(tree, validation_set)
tree.is_leaf = True
after_pruning = accuracy(tree, validation_set)
if before_pruning >= after_pruning:
tree.is_leaf = False
return tree
```
这段代码会递归地遍历决策树的所有节点,然后对每个非叶子节点进行剪枝。具体来说,它会将该节点标记为叶子节点,然后计算在验证集上的准确率。如果剪枝后的准确率比剪枝前高,那么就保留该节点,否则就将该节点还原为非叶子节点。最终返回剪枝后的决策树。
用ID3算法生成的决策树,进行后剪枝,后剪枝的代码怎么写
以下是一个简单的后剪枝代码示例:
```python
def prune(tree, X_val, y_val):
"""
Prune the decision tree using the validation set X_val, y_val
"""
if tree.is_leaf:
return
# Recursively prune the left and right subtrees
prune(tree.left, X_val, y_val)
prune(tree.right, X_val, y_val)
# Check if pruning the subtree resulted in better accuracy
if not tree.left.is_leaf or not tree.right.is_leaf:
pred = tree.predict(X_val)
acc_before = accuracy_score(y_val, pred)
# Prune the subtree by converting it to a leaf node with majority class label
tree.left = None
tree.right = None
tree.is_leaf = True
tree.pred = np.argmax(np.bincount(y_val))
# Check accuracy again after pruning
pred = tree.predict(X_val)
acc_after = accuracy_score(y_val, pred)
# If accuracy decreased after pruning, revert the subtree back to unpruned
if acc_after < acc_before:
tree.is_leaf = False
left_indices = X_val[:, tree.feature] < tree.threshold
right_indices = X_val[:, tree.feature] >= tree.threshold
tree.left = DecisionTree(X_val[left_indices, :], y_val[left_indices])
tree.right = DecisionTree(X_val[right_indices, :], y_val[right_indices])
tree.left.split()
tree.right.split()
# Example usage
tree = DecisionTree(X_train, y_train)
tree.split()
prune(tree, X_val, y_val)
```
阅读全文