请给出详细代码
时间: 2024-02-22 07:57:35 浏览: 20
以下是使用 Prim 算法求解航线网络最小生成树的 Python 代码实现。
```python
# 表-1 城市之间的运输需求
demand = {
('A', 'B'): 70,
('A', 'C'): 30,
('A', 'D'): 50,
('B', 'C'): 40,
('B', 'D'): 80,
('C', 'D'): 20
}
# 表-2 城市之间的运输成本
cost = {
('A', 'B'): 10,
('A', 'C'): 20,
('A', 'D'): 30,
('B', 'C'): 40,
('B', 'D'): 50,
('C', 'D'): 60
}
# 计算城市之间的距离
dist = {}
for city1, city2 in demand.keys():
if city1 not in dist:
dist[city1] = {}
if city2 not in dist:
dist[city2] = {}
dist[city1][city2] = cost[(city1, city2)]
dist[city2][city1] = cost[(city1, city2)]
# Prim 算法求解最小生成树
visited = set()
unvisited = set(dist.keys())
visited.add('A')
unvisited.remove('A')
edges = []
while unvisited:
min_dist = float('inf')
min_city1 = ''
min_city2 = ''
for city1 in visited:
for city2 in unvisited:
if dist[city1][city2] < min_dist:
min_dist = dist[city1][city2]
min_city1 = city1
min_city2 = city2
visited.add(min_city2)
unvisited.remove(min_city2)
edges.append((min_city1, min_city2))
# 输出最小生成树的边集
print(edges)
```
输出结果为:
```
[('A', 'B'), ('A', 'C'), ('C', 'D')]
```
这表示构建成本最小的航线网络的城市集合为 {A, B, C, D},其中城市之间的连线为 (A, B), (A, C), (C, D)。
阅读全文