python 实现 1)读取图像并灰度化,并显示原图像; (3)使用创建的人脸检测多尺度进行人脸检测和人眼检测器进行 人眼检测; (4)依据返回值在图片上用矩形框出人脸,用圆形传出人眼。 (5)将检测出的人脸图像进行截取,并保存

时间: 2024-01-28 07:03:47 浏览: 23
好的,以下是实现上述功能的Python代码: ```python import cv2 # 加载人脸检测器 face_cascade = cv2.CascadeClassifier("haarcascade_frontalface_default.xml") # 加载人眼检测器 eye_cascade = cv2.CascadeClassifier("haarcascade_eye.xml") # 读取图像并灰度化 img = cv2.imread("test.jpg") gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) # 人脸检测 faces = face_cascade.detectMultiScale(gray, scaleFactor=1.1, minNeighbors=5, minSize=(30, 30)) # 遍历检测到的人脸 for (x, y, w, h) in faces: # 在图像上用矩形框出人脸 cv2.rectangle(img, (x, y), (x+w, y+h), (0, 255, 0), 2) # 人眼检测 roi_gray = gray[y:y+h, x:x+w] roi_color = img[y:y+h, x:x+w] eyes = eye_cascade.detectMultiScale(roi_gray) # 遍历检测到的人眼 for (ex, ey, ew, eh) in eyes: # 在图像上用圆形框出人眼 center = (int(ex + ew/2), int(ey + eh/2)) radius = int((ew + eh)/4) cv2.circle(roi_color, center, radius, (255, 0, 0), 2) # 截取人脸图像并保存 roi = img[y:y+h, x:x+w] cv2.imwrite("face.jpg", roi) # 显示原图像 cv2.imshow("img", img) cv2.waitKey(0) cv2.destroyAllWindows() ``` 需要注意的是,代码中使用的人脸检测器和人眼检测器是基于Haar特征的级联分类器(CascadeClassifier),需要提前下载相应的XML文件。可以在OpenCV官网下载,也可以在GitHub上找到。此外,代码中的图像路径和保存路径需要根据实际情况进行修改。

相关推荐

最新推荐

recommend-type

使用Python和OpenCV检测图像中的物体并将物体裁剪下来

主要介绍了使用Python和OpenCV检测图像中的物体并将物体裁剪下来,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
recommend-type

python3读取图片并灰度化图片的四种方法(OpenCV、PIL.Image、TensorFlow方法)总结

主要介绍了python3读取图片并灰度化图片的四种方法(OpenCV、PIL.Image、TensorFlow方法)总结,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习...
recommend-type

Python使用Opencv实现图像特征检测与匹配的方法

主要介绍了Python使用Opencv实现图像特征检测与匹配的方法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
recommend-type

Python OpenCV调用摄像头检测人脸并截图

主要介绍了Python OpenCV调用摄像头检测人脸并截图,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
recommend-type

【人脸识别】用非常简短的Python代码实现人脸检测

写在前面 python代码很简短,不像C++等要写几百行代码,但其实你调用的模块...人脸检测效果图 python完整代码 识别静态图片 # 导入opencv-python库 import cv2 picName = input("请输入你要识别人类的图片名称(如:pi
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【实战演练】增量式PID的simulink仿真实现

# 2.1 Simulink仿真环境简介 Simulink是MATLAB中用于建模、仿真和分析动态系统的图形化环境。它提供了一个直观的用户界面,允许用户使用块和连接线来创建系统模型。Simulink模型由以下元素组成: - **子系统:**将复杂系统分解成更小的、可管理的模块。 - **块:**代表系统中的组件,如传感器、执行器和控制器。 - **连接线:**表示信号在块之间的流动。 Simulink仿真环境提供了广泛的块库,涵盖了各种工程学科,包括控制系统、电子和机械工程。它还支持用户自定义块的创建,以满足特定仿真需求。 # 2. Simulink仿真环境的搭建和建模 ### 2.
recommend-type

训练集和测试集的准确率都99%,但是预测效果不好

即使训练集和测试集的准确率都很高,但是在实际的预测中表现不佳,可能会有以下几个原因: 1. 数据质量问题:模型训练和测试的数据可能存在问题,比如数据标签错误、数据集采样不均衡、数据集中存在异常值等问题,这些问题可能会导致模型在实际预测中表现不佳。 2. 特征工程问题:模型的特征工程可能存在问题,导致模型无法很好地捕捉数据的特征,从而影响预测效果。 3. 模型选择问题:模型的选择可能不合适,比如选择的模型太简单,无法很好地拟合数据,或者选择的模型太复杂,导致过拟合等问题。 4. 超参数调整问题:模型的超参数可能没有调整到最佳状态,需要进行调整。 针对以上可能的原因,可以采取相应的措施进
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。